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Abstract

We are witnessing these years an exponential increase in the number of IoT devices
around the world. Consequently, the amount of data generated by sensor-equipped
IoT devices is increasing a lot. Edge computing came up as a solution to offload the
cloud, that couldn’t keep pace anymore with this evolution. The workload has hence
been shifted towards the edge of the network, closer to (but not at) the IoT devices.

With this evolution in mind, we propose an entire new approach where all the com-
putations such as sensor fusion are done on the sensor-equipped devices themselves.
We believe that this approach will be mandatory in the future, once the approach of
performing all the computations at edge gateways or at the cloud won’t be viable
anymore with the billions of new IoT devices that are bound to come.

To show the feasibility of our approach, we have used it with a relevant use-case
where sensor fusion is done on sonar-equipped IoT devices to perform indoor person
tracking at near real-time. Indoor person tracking can be very useful for monitoring
older persons in nursing homes.

We have implemented a resilient scalable system, using GRiSP boards as prototype
IoT devices, that allows people detection of up to 2 people using trilateration. This
system possesses an anti-crosstalk synchronization feature to prevent sonar crosstalk
to take place. It also offers the possibility of having a live view of the surveyed area.

We have performed numerous deployments of our system under different scenarios
to evaluate it. Encouraging result have been obtained with our approach, that has
not constituted a limit at any time during our research. The only limit we have
observed was the limited detection area of the sonars we used. The results of our
use-case indicate that our approach can be very useful in the future. It could also
be used as a complement to existing edge computing architectures, since it provides
support for gateways.
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1. Introduction

1.1. The increase in the number of IoT devices

The number of IoT devices around the world is growing rapidly. This number of
connected devices is predicted to hit 50 billion [1] in 2020, exceeding by far the number
of humans, personal computers and even mobile phones. In 2021, it is estimated that
this number will rise with 35 billion new devices [2]. By 2030, it is expected that we
would have around 125 billion devices around the world [3].

1.2. Limits of the classical cloud model

With high numbers like these, running applications on such an enormous network
becomes very challenging. The number of IoT devices is already orders of magnitude
larger than the number of computing nodes in data centers. To make it even more
harder, its growth rate is also much higher than that of the number of computing nodes.
Computation is not the only problem, also the network’s latency and bandwidth
limitations become problematic. It becomes harder to have an acceptable latency
between devices and distant data centers for applications that would require immediate
analysis like for an autonomous vehicle [4].

1.3. The computation shift towards the edge nodes

The solution is to make the applications run closer to the IoT edge devices [5], outside
the data centers on the network’s edge. Instead of making them run on distant data
centers, we would run them closer to where they are needed. The advantage of this
approach is that the latency is improved and that the amount of processing at the
data centers is significantly reduced. This is traditionally done by offloading the
cloud’s computation to an entity, such as an edge gateway/device, that is situated
close to the IoT edge devices and that can perform computations locally. However, it
is possible however to go even further...
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1.4. Sensor fusion at the edge devices

1.4.1. Sensor fusion

Sensor fusion is a certain type of computation performed by aggregating data from
multiple sensors. This aggregated data is used to gain a more accurate picture of the
sensors’ subject or environment than can be determined by any one sensor alone [6].
Fusion of sensors’ data, which is traditionally performed at the cloud, is a crucial
computation that has become a very important matter in the context of Internet
of things (IoT). It is a technique that enables better action/decision making by
combining relevant data from different sources.

1.4.2. Proposed approach

We believe that in the future, the number of IoT devices will be so huge that it would
be impractical to continue performing all the computations such as sensor fusion at
the cloud (see 1.2) or at a nearby device such as an edge gateway (see 1.3). Once the
number of nodes will reach this critical point, the same limitations as for traditional
cloud computing will be observed again.
Instead, we propose to perform the fusion of the sensors’ data on the sensor-

equipped devices themselves that are situated at the extreme edge of the network. In
our approach, we favor lateral sharing of data between the end user devices. Vertical
data sharing with the upper layers (gateways and/or the cloud) should only be done
when necessary in our view.

This implies that these devices must have enough computational power to perform
relevant computations. If IoT devices are never used for anything else than sending
collected data to edge servers, and spend most of the time waiting for results to come
back, their processing and storage capabilities are not used even if they could be.
Even with IoT devices whose computational power can be compared with that of
personal computers from the 90s, the number of possible applications running on the
extreme edge is enormous.

1.4.3. Approach advantages

This approach comes with great benefits, especially in the abundant cases where
the need for edge gateways or the cloud can be eliminated. IoT sensor fusion-based
applications following this approach won’t have to rely on them anymore to work
properly. The IoT sensor-equipped devices would be able to run these applications
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entirely on their own, acting as an autonomous entity. Consequently, edge gateways
that crash temporally shouldn’t have an impact anymore on the correct working of
these sensor fusion based applications.
Removing the need for edge gateways is extremely cost-beneficial since less mon-

ey/resources would be spent on buying/manufacturing and maintaining them. By
eliminating the need for edge gateways and performing computations at the extreme
edge on computation-capable sensor nodes, the number of needed devices becomes
lower than with the traditional edge computing approach. This approach will come
very handy in the future when the amount of edge gateways will become too high.
As the amount of available resources on our planet is finite, decreasing the number of
needed devices can only be advantageous.
Another big advantage is that by running the computations on the extreme edge,

the latency becomes close to non-existent. This approach should therefore be very
well suited for applications that require fast processing of data. Also, it adds the
possibility for intra-layer data sharing at the layer made of the sensor-equipped
devices. Finally, it is very good for data-privacy, as all generated data can be kept
locally at this layer’s network.

Nevertheless, our approach does not remove the possibility of compatibility with
current existing models. Systems built with our approach can be fully interoperable
with edge gateways. As a proof, the system we have built for our use-case allows to
retrieve information via a gateway that is be present near the network of nodes.

1.5. Accurate real-time person tracking in a room

To show the feasibility of the approach described in Section 1.4, we have decided
to experiment this approach with a relevant use-case that does sensor fusion at the
extreme edge (at the sensor nodes themselves). The objective is to evaluate whether
our approach can work for resource consuming applications where time matters.

1.5.1. Motivation

The total number of older persons all around the world is increasing significantly. For
example, the number of persons around the world aged 80 years or over is projected
to increase more than threefold between 2017 and 2050, rising from 137 million to
425 million [7]. Monitoring them while they are at home or inside buildings becomes
a problem of significant importance. One of the best ways is by being able to localize
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these older people indoors. This could for example be used to track them when they
walk out of their bed during the night (and possibly fall) [8]). It could also be used
to detect and track an intruder in a protected location indoors.

1.5.2. Description

We have put into place a system that uses sensor fusion at the extreme edge with
sonars to track a moving target at near real-time. The sensor fusion part is done by
aggregating on each sonar-equipped IoT device the measurements originating from
the other devices and from the device itself. This aggregation makes it possible to
calculate the target’s position. The system does near real-time computing as there
is only a slight time delay introduced by data transmission and data processing.
The computing is also soft real-time because the usefulness of the produced results
decreases gradually over time and not immediately as in hard real-time computing
[9]. This system also allows to retrieve information via a gateway to allow having
a live view of the surveyed room. We have included a user manual for this system
destined for any user interested in using it (see Appendix C).

1.6. Thesis contributions

Our thesis contributes in a lot of ways.

Sensor fusion at the extreme edge at near real-time Our thesis shows that the ap-
proach of performing sensor fusion at the extreme edge (i.e., at the sensor nodes)
is a viable approach. It does so by using this approach with success for a rele-
vant use-case that uses sensor fusion to compute relevant information (i.e., the
position of a moving target in a room) at near real-time.

System for sonar-based indoor target tracking We have made the entirety our sys-
tem/software available to the great public. This system can be used by anyone
everywhere. The only requirement is to have sonar-equipped IoT devices that
can run Erlang, and that possess a reasonable amount of processing power.

Scalability Any number of nodes can be part of our system. We have designed it in
such a way that the number of nodes present in the system does not have an
influence on the correct working of the system (see 5.2.2). The tests we have
carried out with our system were done using 1 to 4 boards.
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Resiliency to crashes No matter if one or more nodes in the network crash, the
system would continue to work and give the position in near real-time, more or
less accurately depending on the number of active nodes remaining (see 5.4.2.1
and 5.2.2).

Anti-crosstalk system for sonars During the development of our use-case, we have
realized that the crosstalk problem (see 5.4.1) hindered significantly the results’
accuracy (see 6.4.2.3) of our system. We hence developed a coordination system
to make this problem disappear (see 5.4). This system is based on a global
server that performs a round robin to tell the boards’ sonars to make their
distance measurement in turn. This server is located on one of the nodes of the
cluster and is crash resilient. If the node on which the server is located crashes,
the server is restarted on another node in the network.

Improvement of a grisp module for the Pmod MAXSONAR We have added a fea-
ture that was not available before and that we needed to avoid crosstalk between
sonars. Indeed, with the current version of this module, the multiple sonars
continuously emitted waves to measure a distance, which caused this problem
of crosstalk. In our new implementation of this module, we have introduced
the possibility to trigger the distance measurement when needed and to keep
the possibility of using the continuous mode. The existing driver didn’t have to
be modified (see 5.5).

Interoperability with higher layers To demonstrate that it is possible for a gateway
to retrieve data from our system, we have created a web application that can
display at near real-time data sensed and computed by each node (see 5.6).

Live view of a person On the web application described in the previous point, we
have added the possibility to visually observe in near real-time a person moving
in a room, as illustrated in Figure 1. In this figure, we can see a person moving
from left to right. The dark grey square represents the room. Each little red
square is the location of a board and each cyan coloured square is the position
calculated by one of the boards. Each board sends the position it has calculated
through the network we have set up.

An ad hoc network Our system can establish a custom ad hoc wireless network
for peer-to-peer communication, without using a pre-existing Wi-Fi network
(section 5.3.4). It can also be reconfigured to connect to standard 2.4 GHz
wireless access points.
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Figure 1.: Live view of a moving person in a room.

UDP multicast group communication Interoperability with a gateway is possible
thanks to the ad hoc network of the IoT nodes as well as a multicast UDP
group to which sensor data and calculation results are sent (section 5.3.4). To
retrieve the information sent by each node, the gateway only needs to connect
to the nodes’ multicast group.

Genericity of our system Our system can be used by any type of IoT device sup-
porting Erlang as well as with any type of sonar and data. It also allows to
perform several measurements with more than one sensor at the same time on
the same node. Multiple calculations can also be performed at the same time
with our system (section 5.3.7).

1.6.1. Experimental results

What we list in this section are not contributions per se, but rather experimental
results on existing technologies that may be of interest to users of these technologies.

Speed of UDP and TCP messages on GRiSP boards We have performed simple
tests that can be replicated for measuring the end-to-end delay between GRiSP
boards using UDP multicast and TCP. The description and results of these
tests can be found at section 6.1
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Technical limit of Pmod MAXSONAR We have tested the limit at which a person
can be correctly and consistently detected by a Pmod MAXSONAR. The
theoretical limit described in the datasheet is 8 feet (244 cm) [10]. We have
shown in our results (see 6.4.2.1) how this limit is too high for applications
where the sonar’s readings must consistently detect a person.

1.7. Verdict

This thesis has generated a lot of results. The results we have obtained with our
use-case allow us to conclude that the approach we proposed is a viable approach.
We have developed a resilient system constituted of components that can each be
reused for numbers of different use-cases. That system can track up to two targets in
a room using sonar-equipped IoT devices, and this while performing all the sensor
fusion calculations on these devices themselves. In this use-case, new sensed data
needs to be generated and propagated very frequently by each device. New incoming
sensed data also needs to be processed very quickly. The devices were able to do this
while cooperating in a very efficient way as an autonomous entity. This allowed them
to compute at near real-time (with a non-visible delay) the target’s position. The
approach has not shown any sign of limitation during the whole process. The only
limitation we have encountered were the sonar sensors we employed, but they still
were able to make the system we developed produce remarkable results.
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2. Related Work

2.1. Edge and fog computing

Edge computing refers to the enabling technologies allowing computation to be per-
formed at the edge of the network, on downstream data on behalf of cloud services
and upstream data on behalf of IoT services [11]. It appeared as a new distributed
computing paradigm that brings computation and data storage closer to the location
where it is needed, to improve response times and save bandwidth [12]. Its first
form appeared in the late 1990s in the form of content delivery networks (CDN) to
deliver web and video content by deploying edge servers close to users [13]. These
edge servers then evolved in the early 2000s to also host applications and application
components [14].
The term fog computing is a term created by Cisco that refers to a standardized
way of performing edge computing [15]. Many use this standard as a jumping-off
point for edge computing. It makes use of fog nodes that act as intermediary nodes
between the cloud and the edge’s sensor-equipped nodes, to bring the cloud services
closer to the users [16].

2.2. Mist computing

Mist computing is a relatively new term that is not yet often used. It is referred to
as computing at the very edge of a network, typically consisting of micro-controllers
and sensors [17]. This approach is used as a complement to fog and cloud computing.
Mist computing uses the computation capabilities available on the sensors to already
perform some computations locally and to delegate the other computations to fog
computing nodes. By for example filtering data locally, less data must be sent by
that sensor node, which in turn conserves battery power as well as bandwidth [18].
The difference with our approach is that with mist computing, only a small part of
the computations is performed at the very edge. This approach is still dependent on
fog nodes and the cloud to function properly.
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2.3. Data Fusion near the real edge

To the best of our knowledge, no literature exists yet that treat sensor fusion at the
extreme edge of the network, i.e. at the sensor nodes. There are however numerous
papers that treat sensor fusion near the extreme edge, often referring to this place
as the edge. This term is somewhat ambiguous, since some papers consider local
edge servers/gateways to be situated at the edge, while some others only consider
the sensor nodes to be situated at the edge of the network. To avoid any ambiguity,
sensor nodes would be referred to as "extreme edge devices" in the rest of our thesis.
This paper for example [19] proposes the concept of temporal data fusion at the edge.
Here, the process of sensor fusion is performed at edge servers, and not at the sensors.
The only task that sensor nodes perform here, is to send data they senses to the
nearest edge servers.

Our approach goes further than theirs by performing the sensor fusion at the
sensor-equipped nodes themselves. In the case of a power outage between these nodes
and the edge servers, our application would still be functional, while theirs would not.

2.4. Cognitive edge computing

This presentation [20] brings cognitive edge computing to the light. In this type of
edge computing, edge devices near the IoT devices can perform cognitive computing.
Cognitive computing is a resource-hungry task that’s usually done at the cloud. The
challenge of this approach is that the edge devices are short on power, networking,
storage and computational resources [21]. The idea proposed by the presentation
is to have an energy-efficient, collaborative sensing done by the IoT devices. It
proposes to do so by having real-time coordination between them through the edge
device. An ultra-low power battery-free sensor can for example be used to detect
the right time to trigger a sensor such as a camera that requires more resources to
use. The data produced by cameras also requires a lot of resources to be processed
at the edge device. By not triggering it, this data won’t be produced and the edge
device won’t have to process it. By making the edge device treat incoming data
less often, interesting computations that are more resource-hungry and complex (for
example cognitive/ML-based computations) can be done at the edge device by taking
advantage of the resources spared thanks to the collaborative sensing. The difference
with our approach is that with our approach, the coordination isn’t orchestrated by
an edge device, but by the IoT devices themselves. We will describe in Section 5.4
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how we performed coordination to remove the problem of crosstalk between sonars.

2.5. The Achlys framework

Our thesis promotor Peter Van Roy and advisor Igor Kopestenski presented the
Achlys framework and its applications in two papers [22, 23]. It is an edge computing
framework that provides reliable storage, computation, and communication capabili-
ties at the extreme edge of the network. It uses Partisan [24] for communication and
Lasp [25] for providing efficient decentralized storage based on the properties of the
CRDTs’ (Conflict-Free Replicated Data Types). A CRDT is an abstract data type
that is designed to be replicated at multiple processes or computers in a network [26].
They exhibit the following nice properties:

• Any replica can be updated concurrently and independently without coordina-
tion with another replica.

• It always possible to resolve inconsistencies that might result of these updates.

2.6. Trilateration

Trilateration is a method of control extension, control breakdown, and control densifi-
cation that employs electronic distance-measuring instruments (EDMIs) to measure
the lengths of triangle sides [27]. This method contrasts with triangulation that
uses angle measurements instead. Sonars are very effective distance-measuring in-
struments. Assuming the sonars’ locations are known, it is possible to determine a
target’s position by measuring the distances of the sonars to a target and performing
trilateration. With the measures of only 2 sonars, we can limit the number of possible
locations to 2. This figure 2 illustrates this with a vertical 2-dimensional view of 2
sonar readings r1 and r2. The red dots represent the 2 possible locations. In most
applications, the incorrect location can easily be identified and filtered out. If that
isn’t the case, then one could make use of an additional sonar to compute the target’s
position without ambiguity.
The relationship with our work is that we use trilateration on the measurements
yielded by sonar-equipped IoT devices.
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Figure 2.: Ambiguity using 2 sonars - Image was made on Gimp
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3. Resources used and methodology

3.1. Requirements for the experiment

To experiment with our thesis’ use-case, we would need several hardware and software
resources. The 2 sections below cover in a non-exhaustive way the hardware and
software we have used to successfully develop our system and conduct our experiments.

3.2. Hardware

For the hardware part, we would need connected devices that can be equipped with
sonars. They must also be physically capable of running applications entirely on their
own, since this is what the thesis is about. We then of course would need sonars
that are compatible with these devices. Each of these 2 hardware components are
mandatory for our application. A detailed overview of our picks for these components
is given below.

3.2.1. GRiSP boards

We have decided to use GRiSP boards (Figure 3) as our sensor-equipped edge
devices. GRiSP boards are highly energy efficient IoT devices that are equipped
with connectors to which PMod sensors and actuators can be attached. They can
communicate over Wi-Fi and posess a MicroSD Socket to which standard MicroSD
cards can be attached.

3.2.1.1. Motivation

There are several reasons why have chosen the GRiSP boards to represent our sensor
devices located at the extreme edge. First of all, they are great to be used as
prototype devices. They are the ideal candidate for the development of a multitude
of sensor-based applications, since all Pmod connectors are already present on it.
Another advantage is that since we want to use Erlang (see 3.3.1) for developing

our application, using GRiSP boards allows us to test our application very quickly.
That is because no prior setup is required to install Erlang, as it is already included
in this device by default. They are made to be used with Erlang since they boot
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Figure 3.: GRiSP board - Image was taken from https://www.kickstarter.com/
projects/peerstritzinger/grisp-2

straight into the Erlang VM running on real bare metal. Finally, this device also has
the advantages of being energy-friendly and lightweight.

The price for GRiSP boards is at the time of writing e213. This price is however
insignificant, as it constitutes only a small fraction of the expenses for developing an
edge application. Buying cheap boards/devices for the development would be a false
economy. Currently, GRiSP boards are an excellent choice to quickly develop Erlang
applications on. These applications can, once they are ready, be deployed on cheaper
mass-produced edge devices. These cheaper devices are permitted to be specifically
designed for these applications and are allowed to only possess the hardware required
for the application to work. GRiSP boards are great prototyping devices, but they
are not well suited at the moment for finished products due to their price.

3.2.1.2. Specifications

The following specifications are taken from the GRiSP website1.

CPU The GRiSP board possesses an Atmel SAM V71 processor which includes an
ARM Cortex M7 core that runs at a clock speed of 300 MHz. This clock speed is
comparable with that of processors from the 90s2.

1https://www.grisp.org/specs/
2https://smoothspan.files.wordpress.com/2007/09/clockspeeds.jpg

https://www.kickstarter.com/projects/peerstritzinger/grisp-2
https://www.kickstarter.com/projects/peerstritzinger/grisp-2
https://www.grisp.org/specs/
https://smoothspan.files.wordpress.com/2007/09/clockspeeds.jpg
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Internal memory It hosts a 2048 Kb flash memory (used by the bootloader) and a
384 Kb SRAM.

External memory For the external memory, a 64Mb SDRAM is used, as well as a
2Kb EEPROM. The external memory also includes a standard MicroSD card that
can be attached to the MicroSD Socket specifically designed for it.

Network The GRiSP board is equipped with a Wi-Fi antenna that communicates
using the 802.11b protocol at a frequency of 2.4 GHz.

I/O The board comes with several connectors that are compatible with Pmod
actuators and sensors manufactured by Diligent. Below is a list that details the
different connectors present on the board.

• A Dallas 1-Wire via 3-pin connector

• A Digilent Pmod compatible I2C interface

• Two Digilent Pmod Type 1 interfaces (GPIO)

• One Digilent Pmod Type 2 interface (SPI)

• One Digilent Pmod Type 2A interface (expanded SPI with interrupts)

• One Digilent Pmod Type 4 interface (UART).

3.2.2. Pmod MAXSONAR sensor

The Pmod MAXSONAR (see Figure 4) is a very small sonar that can be connected
to the GRiSP board via its Type 4 interface with the UART connector3. It makes
use of the MaxBotix (MB) 1010 LV-MaxSonar-EZ14. Within a certain range, users
of this sensor can effectively measure how far an object or person is with an accuracy
of 1 inch. Large objects can be detected by it at a distance up to 6.45 meters. It
consumes very few power and it is designed to be used indoors for applications such
as people detection, distance measuring, autonomous navigation for robots etc. The
specifications below come from the datasheet of the MaxBotix 1010 LV-MaxSonar-EZ1
[10].

3https://store.digilentinc.com/pmodmaxsonar-maxbotix-ultrasonic-range-finder/
4https://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm?_ga=2.254695880.1132479797.
1595168189-432722846.1590669867

https://store.digilentinc.com/pmodmaxsonar-maxbotix-ultrasonic-range-finder/
https://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm?_ga=2.254695880.1132479797.1595168189-432722846.1590669867
https://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm?_ga=2.254695880.1132479797.1595168189-432722846.1590669867
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Figure 4.: Pmod MAXSONAR: Maxbotix Ultrasonic Range Finder.

Range This sonar provides range information of objects that are situated up to 6.45
meters away with a resolution of 1 inch (2.54 cm).

Supply It operates from 2.5V to 5.5V and needs a low 2.0mA average current
requirement.

Reading rate The reading rate of the sonar can go up to 20Hz. This means that
one reading can be done every 50 milliseconds.

Recommended temperature range It is recommended to use this module in an
environment where the temperature doesn’t vary outside 0 to 60◦C.

Beam pattern The datasheet shows how the detection patterns differ for tracked
objects of different sizes (see Figure5). Chart A (resp., B) shows the detection pattern
obtained when placing dowels of diameter 0.61 cm (resp., 2.54 cm) if front of the
sonar. The pink dotted detection patterns on both charts were obtained supplying
the MB1010 LV-MaxSonar-EZ1 a voltage of 3.3 volts. The pattern covers a larger
area by supplying more voltage. Each square represents a surface of 30x30 cm.

People detection This sonar can according its datasheet detect people up to 8
feet (2.44 meters) away. By using a voltage of 5.5V, this detection range can me
maximized. The pattern for people detection falls between sonar patterns A and B 5.
During one of our experiments 6.4.2.1, we saw that this limit of 244 cm is too high
for the sonar to consistently detect a person in our use-case.
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Figure 5.: MB1010 LV-MaxSonar-EZ1’s beam patterns - Image was taken from its
datasheet

3.3. Software

3.3.1. Erlang/OTP

3.3.1.1. Introduction

We used Erlang as our main programming language, which consists of the Erlang
runtime system (ERTS), combined with OTP (Open Telecom Platform), which is a
set of libraries (and design principles) for Erlang5. Originally, Erlang/OTP was a
proprietary software of Ericsson created in 1986 by Joe Armstrong, Robert Virding,
and Mike Williams. It was then released as a free open-source software in 1998 [28].
It has immutable data, pattern matching and functional programming [29].

3.3.1.2. Desirable properties

Erlang is specifically designed for systems that strive for the following traits:

• Robustness

• Soft real-time

• High availability

• Concurrency support

• Distributed
5https://www.erlang.org/

https://www.erlang.org/
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3.3.1.3. Modules

Erlang uses modules to allow separating functions into independent modules. Modules
in Erlang are comprised of a sequence of module attributes followed by function
declarations. Module attributes are used to define properties of a module. Erlang
functions can be either named or anonymous. They have the capability of having
guard sequences which will run the guarded function only when evaluated to true.

3.3.1.4. Processes

To support concurrency and distributed programming, Erlang makes use of lightweight
processes, which are basically threads of execution that share no data with each
other. Erlang processes are what allow functions contained into modules to be be
executed. They can communicate/exchange information with one another in the form
of messages (message passing).

3.3.1.5. Rebar3

Rebar3 is a build tool for Erlang/OTP sponsored by the Erlang/OTP team6. It is a
very convenient tool that can be used to build, compile and deploy Erlang applications
that adhere to OTP standards. It facilitates the process of creating, developing and
releasing Erlang applications and libraries.

Dependencies management Each application created using Rebar3 contains its
own rebar.config file. In Erlang/OTP, files with names ending with .config are
configuration files. Files of this kind contain configuration parameters values for the
applications in the system7.
Dependency management using Rebar3 is very easy. To add a dependency to the
application, one just has to add it to the list of the deps entry inside the rebar.config
file. This dependency and the others will be resolved once the user executes the
rebar3 upgrade command.

3.3.1.6. The rebar3_grisp plugin

Rebar3 proposes a plugin named rebar3_grisp8 that provides users with a command
for creating new projects targeted for GRiSP boards from a template. It also adds

6https://www.rebar3.org/
7http://erlang.org/doc/man/config.html
8https://github.com/grisp/rebar3_grisp

https://www.rebar3.org/
http://erlang.org/doc/man/config.html
https://github.com/grisp/rebar3_grisp
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useful commands to Rebar3 for building and deploying such GRiSP applications.

3.3.2. Elixir, Mix and Phoenix LiveView

Elixir is an open source project, originally started by José Valim. It is a dynamic,
functional programming language designed to run on the Erlang VM (BEAM). This
allows developers to have access to Erlang’s ecosystem including the battle-tested OTP
framework. The language is a compilation of features from various other languages
such as Erlang, Clojure, and Ruby [30, 31].

Mix is a build tool that provides tools for creating, compiling and testing Elixir
projects, managing their dependencies and even more. It is the equivalent of Erlang’s
Rebar3 [32].

Phoenix is an elixir framework that allows to build rich, interactive web applications
quickly, with less code and fewer moving parts [33].

Phoenix LiveView is a Phoenix library that provides rich, real-time user experiences
with server-rendered HTML [34].

3.4. Methodology

We followed an incremental approach for implementing our application. Every time we
faced an issue or had to implement a new feature, we brought change to our application
and thoroughly tested the changed component. Before testing new functionalities on
the sensor devices, we first tested them when possible with device emulations on the
shell. The objective of this testing part is to filter as much development errors as
possible.
Testing functionalities on the devices themselves is a time-consuming process since
it includes the deployment on the device and the device’s startup. We therefore
prioritized testing it on emulations first. If this stage is successful, we then tested the
new functionality by deploying it on the sensor devices. We have also frequently used
regression testing on our previously developed and tested functionalities to check
whether they still perform well after some changes.





Part III.
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4. Algorithm

4.1. Foreword

Before diving directly into the implementation, it is better to first describe in natural
language how the whole procedure works. By making abstraction of the tools (GRiSP
boards, Pmod MAXSONARs, Erlang/OTP, Rebar3, ...) and details about techniques
we use (trilateration, filters, measurement synchronization, ...), it becomes easier to
reason about how the whole system works.

As a reminder, the goal is to track a moving target indoors using multiple sonar-
equipped connected devices. It has to be done in such a way that these devices
perform all the computations themselves. They must keep working and collaborating
correctly even in the case they are disconnected from the external world.

4.2. Description

The way the whole system comprised of sonar-equipped nodes works is as follows. They
collaborate in such a way that only one node at a time triggers a sonar measurement.
Each node, turn by turn, performs a sonar measurement. By doing so, the problem
of cross-talk (see 5.4.1) between sonars is solved. These sonar measurements are done
very frequently (more than one per second) to detect changes in the target’s position
in a quick manner. Every time a sonar measurement has been made by a node, the
obtained information is shared with all other nodes by making the node send it to
them.
Since for our use-case, all the nodes of the network are in the same room, we

assume that non-crashed nodes have the ability to contact each other at any time.
A consequence of this assumption is that we do not have to worry about possible
network partitions.

To ensure that the different nodes synchronize between each other to together
perform only one sonar measurement at a time, we make use of a synchronization
server. This server runs on a single node in the network. On top of that, a client
part runs on each node of the network and is in charge of contacting the server. Al-
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gorithms 1 and 2 describe the general functioning of the client side and the server side.

At the same time as the measurements are made, calculations can be performed at
a user-specified frequency. The algorithm 3 describes how calculations are performed.
The algorithm 4 shows how the detection of up to 2 persons is performed. More
explanation about this algorithm can be found at 5.2.2.1.
What we aim to achieve by doing so on each node, is that each node has access

the most recent sonar reading from every node part of the system. Each node can
then, based on the obtained sonar readings from every node including itself, calculate
the position of a static/moving target using trilateration.
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Algorithm 1 Synchronization of measurements, client side.
1: MeasurementOfAllNodes ← new_dictionary()
2: CurrentNodeId ← get_current_node_id()
3:
4: procedure perform_measurements(Iterations, FilterFunction)
5: send_measurement_request_to_server(CurrentNodeId)
6: I ← 1
7: while I ≤ Iterations do
8: wait_from_server(perform_measurement_permission)
9: MeasurementResult ← make_measurement()

10: if I 6= Iterations then
11: send_ack_to_server(CurrentNodeId)
12: end if
13: if not(FilterFunction(MeasurementResult)) then
14: send_to_other_nodes(MeasurementResult)
15: end if
16: add_or_replace(MeasurementOfAllNodes, CurrentNodeId,

MeasurementResult)
17: I := I+1
18: end while
19: end procedure
20:
21: procedure Receive_Measurement(NodeId,Measurement)
22: add_or_replace(MeasurementOfAllNodes, NodeId, Measurement)
23: end procedure
24:
25: function add_or_replace(Dictionary, Key, Value)
26: if Dictionary.is_key(Key) then
27: Dictionary.replace(Key, Value)
28: else
29: Dictionary.add(Key, Value)
30: end if
31: end function
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Algorithm 2 Synchronization of measurements, server side.
1: NodeOrder ← new_queue()
2:
3: procedure Receive_measurement_request(NodeId)
4: NodeOrder.put_last(NodeId)
5: end procedure
6:
7: procedure Dispatch_turn
8: FirstNode ← NodeOrder.remove_first()
9: FirstNode.send(perform_measurement)

10: wait_ack(FirstNode)
11: NodeOrder.put_last(FirstNode)
12: end procedure

Algorithm 3 Calculations process
1: procedure Perform_calculation(Iterations, FilterFunction,

WaitTime)
2: I ← 1
3: while I ≤ Iterations do
4: sleep(WaitTime)
5: Measurements ← get_all_measurements()
6: Results ← calculation(Measurements)
7: if not(FilerFunction(Result)) then
8: send_to_other_nodes(Result)
9: end if

10: end while
11: end procedure

Algorithm 4 Algorithm for the detection of up to 2 persons
1: procedure Detect_up_to_2_persons(Sonars, Measurements)
2: if Measurements.length() >= 4 then
3: ContiguousSonarPairs ← get_contiguous_sonars(Sonars)
4: Positions ← new_list()
5: for SonarPair in ContiguousSonarPairs do
6: Positions.append(trilateration_2_measurements(SonarPair,

Measurements))
7: end for
8: Positions := fuse_close_positions(Positions)
9: end if

10: Positions ← detect_one_person(Sonars, Measurements)
11: return Positions
12: end procedure
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4.3. Trilateration

With known sonars’ distances to an object, and with sonars placed on different
positions, we can calculate the position of that object using trilateration (described
in 2.6). We have developed 2 different trilateration formulae that are used depending
on how much recent sonar measurements are available (coming from different sonars).

4.3.1. Trilateration using 2 available measurements

We consider a two-dimensional Cartesian space for defining the sonars’ positions.
The sonars’ positions can differ in abscissa and/or in ordinate. As shown in Section
2.6, performing trilateration with 2 sonar measurements renders 2 different possible
positions, or only one in the rare cases where the target’s position forms a straight line
with the 2 sonars’ positions. In some cases where 2 possible positions are obtained,
the incorrect position can easily be identified and filtered.

4.3.1.1. Formula derivation

During our research, we have come across very few formulae for doing trilateration
with 2 measurements. The few of those we encountered (for example this one [35])
could only be used in the case the two sonar’s ordinate are the same, which is not
always the case in our application. One example in which this does not hold would
be when 2 sonars sit at the opposite corners of a room. That is the reason why we
had to derive our own formulae.

The formula we have derived is based on the Pythagorean theorem. To make it
clearer, an illustration 6 is provided. We consider two sonars that each produce
measurement ranges r1 and r2. We suppose that the first sonar is situated at position
(0,0). The second sonar’s position varies from the first sonar’s position with a certain
horizontal separation u and vertical separation v. The target’s position is at the
unknown point (x,y). On the illustration 6, it is appears twice since it is a case where
there is ambiguity regarding the target’s position after applying trilateration. The
Pythagorean theorem yields the following two equations.

r21 = x2 + y2 (1)

r22 = (u− x)2 + (v − y)2 (2)

The first (resp., second) equation was obtained using the known coordinates of the
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Figure 6.: Formula derivation illustration - Image was made on draw.io

first (resp., second) sonar. Using Wolfram1, we were able to quickly solve these two
equations by expressing the unknown parameters x and y using the known parameters
r1, r2, u and v. When v equals 0 (i.e., the 2 sonars are at the same ordinate), x and
y are given as follows.

x =
r21 − r22 + u2

2u

y = ±
√
r21 −

(r21 − r22 + u2)2

4u2

(3)

Below is when they are not placed at the same ordinate (v 6= 0).

x =
r21u−

√
−v2(r41 − 2r21(r

2
2 + u2 + v2) + (−r22 + u2 + v2)2)− r22u+ u3 + uv2

2(u2 + v2)

y =
r21v

2 + u
√
−v2(r41 − 2r21(r

2
2 + u2 + v2) + (−r22 + u2 + v2)2)− r22v

2 + u2v2 + v4

2v(u2 + v2)
(4)

or

x =
r21u+

√
−v2(r41 − 2r21(r

2
2 + u2 + v2) + (−r22 + u2 + v2)2)− r22u+ u3 + uv2

2(u2 + v2)

y =
r21v

2 − u
√
−v2(r41 − 2r21(r

2
2 + u2 + v2) + (−r22 + u2 + v2)2)− r22v

2 + u2v2 + v4

2v(u2 + v2)
(5)

1https://www.wolframalpha.com/

https://www.wolframalpha.com/
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Two different (x,y) pairs are produces most of the time. It is assumed that the sonars
aren’t placed at the same position (u2+v2 6= 0). It also works for when the first sonar
(the one that produces r1) isn’t positioned at (0,0). All one has to do then is to add
to each resulting (x,y) pair the position of the first sonar. If for a certain resulting
(x,y) pair, the first sonar’s position is (a,b), then the resulting target’s position would
be (x+a,y+b).

4.3.2. Trilateration using 3 available measurements

When we want to detect the position of a single person with 3 or more measurements
(originating from different sonars), we only select 3 of them and perform trilateration
with those 3 measurements. Since there are 3 of them, there cannot be ambiguity
regarding the target’s position as there would be with only 2 measurements (figure
6). The trilateration formula 6 we use here is another one that we have also derived
using the Pythagorean theorem.

This formula calculates, for a node with id i, the position (xp,i, yp,i) of the person
p in the room. Part of the known parameters in this equation are n, the number
of sonar-equipped nodes present in the system, and (xi, yi), the coordinates of
node i. The other known parameters are the coordinates (x(i−1)%n, y(i−1)%n) and
(x(i+1)%n, y(i+1)%n) of the 2 neighbouring nodes with ids i− 1 and i+ 1. Parameters
vi, vi−1 and vi+1 are the sonar measurements obtained by the node i and its two
neighbours.



xp,i = CiEi−FiBi
EiAi−BiDi

yp,i = CiDi−AiFi
BiDi−AiEi

Ai = −2x(i−1)%n + 2xi

Bi = −2y(i−1)%n + 2yi

Ci = v2(i−1)%n − v2i − x2(i−1)%n + x2i − y2(i−1)%n + y2i

Di = −2xi + 2x(i+1)%n

Ei = −2yi + 2y(i+1)%n

Fi = v2i − v2(i+1)%n − x2i + x2(i+1)%n − y2i + y2(i+1)%n

,∀i ∈ NodeIds ; n = NbNodes

(6)
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5. Implementation

5.1. Architecture

We have developed four applications for our system: one grisp application1, two
Erlang OTP applications [36] and one Phoenix LiveView application2. You are
invited to consult Appendix A to obtain the links to each GitHub repository of these
applications. The installation instructions are included also included in Appendix
C. The two Erlang/OTP applications we have developed are called Hera (section
5.3) and Hera_synchronization (section 5.4). We have designed them in such a
way that it permits doing sensor fusion on any kind of node that supports Erlang.
The grisp application is called sensor_fusion (section 5.2) and allows us to deploy
Hera (section 5.3) and Hera_synchronization (section 5.4) on GRiSP boards for
doing computations at the extreme edge using these two applications. Finally, the
LiveView application is called sensor_fusion_live_view (section 5.6) and gives us
the opportunity to have a view of what is sensed by the nodes at near real-time. You
can find the dependencies between the two Erlang/OTP applications and the grisp

application in Figure 7.

Figure 7.: Dependencies between our Erlang/OTP and grisp applications

5.2. Sensor_fusion

This grisp application has been made to perform sensor fusion at the extreme edge
of the network, more precisely at sensor nodes. We have included in this application
a module containing the necessary implementation of our use-case (Section 1.5).
This application works with the Hera sensor fusion framework we have designed. It

1https://github.com/grisp/grisp/wiki/Creating-Your-First-GRiSP-Application
2https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html

https://github.com/grisp/grisp/wiki/Creating-Your-First-GRiSP-Application
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html
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also makes use of Hera_synchronization for synchronizing the sonar measurements
between the nodes.

To be able to use the above two Erlang/OTP applications we designed, it is necessary
to include them as dependency applications inside the rebar.config file of the project
(see 3.3.1.5). We have also includeded grisp as a dependency in order to be able
to deploy our application on GRiSP boards. We have a fourth dependency on our
application, called epmd3, which is necessary for the proper functioning of the program
on GRiSP boards. This last dependency is added by default when creating a new
grisp application. The code snippet 5.1 illustrates these dependencies.

1 {deps , [
{hera , {git , "https :// github.com/guiste10/hera.git" , {branch , "master"}
}},

3 {hera_synchronization , {git , "https :// github.com/bastinjul/
hera_synchronization", {branch , "master"}}},
{grisp , {git , "https :// github.com/bastinjul/grisp.git", {ref , "a1e3f2c"}}}
,

5 {epmd , {git , "https :// github.com/Erlang/epmd", {ref , "4d1a59"}}}
]}.

Snippet 5.1: Sensor_fusion dependencies

5.2.1. Target tracker app

The implementation of our use-case is located inside the hera_position module.
You can find the API functions of this module in Appendix A.1.

This API gives access to two principal functions. The function launch_hera is
used to start the sonar measurements and the trilateration calculations on a single
board. The other function restart servers to restart the procedure by changing some
parameters. The first function can take from five to seven parameters, depending on
what you want to do. Notice that the function launch_hera must be called on each
board with the correct parameter values in order to make our system work correctly.
At least 2 nodes must be used in order to be able to calculate a target’s position with
or without ambiguity, depending on how they are placed (see 5.2.4.1). The more
nodes are used, the greater the room’s surveyed area can become by spreading them
intelligently across the room.

launch_hera/5 takes as parameters PosX and PosY, representing the (x,y) position
of the node inside the room. The nodes can be placed on any location as long
as the nodes’ abscissa and ordinate are non-negative.

3https://github.com/Erlang/epmd

https://github.com/Erlang/epmd
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The NodeId parameter represents the id of the node. All identifiers that are
part of the cluster must be different and start at 0. Adjacent nodes must have
adjacent identifiers (except node 0 which has node 1 as its neighbor and the
node with the highest id if there are more than 2 nodes in the cluster). When
using for example 3 nodes, the id’s would have to range from 0 to 2.
The {MinX, MinY} and {MaxX, MaxY} parameters express the minimum and
maximum coordinates respectively where a person or object can move inside
the room. How they are used is explained in 5.2.4.1.

If you choose to start the trilateration on a board with this function of 5
parameters, a calculation (see 5.3.6) of the position will be made every 50 ms
and the measurements (section 5.3.2) of the sonars will be synchronized (see
5.4) between boards. The measurements and calculations will go on forever.

launch_hera/6 takes the same parameters as launch_hera/5 with the extra pa-
rameter MaxIterations, that represents the maximum number of calculations
and measurements to be made before the node goes to sleep. The frequency
of the calculations stays at 50 ms and the measurements of sonars are also
synchronized.

launch_hera/7 takes the same parameters as launch_hera/6 with the extra pa-
rameter Frequency, the frequency at which the calculations of the position
of the object and the sonar measurements are made. With this arity, the
measurements are set to be non-synchronized.

If you choose to use one of the previous functions with arity 6 or 7, the measurements
and calculations will stop once the maximum number of iterations is reached. You
can restart new calculations and measurements with the second function restart/2

which takes Frequency and MaxIterations as parameters.

5.2.2. Measurement and calculation functions

We have included in this module the 2 necessary functions that make measurements
and calculations, as well as the two functions needed to filter the values resulting
of these functions. These 2 functions are defined in order to interface with the
hera module from the Hera app. The measurement function makes use of the
pmod_maxsonar module that interfaces with the Pmod MAXSONAR sensor to return a
value expressed in centimeters.
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5.2.2.1. Calculation function

The calculation function we have included is used to calculate the position of one
to two targets in the room. This calculation function uses different trilateration
formulae (see 4.3.1 and 4.3.2) depending on how much recent measurements coming
from different nodes are available, and depending on whether the user wants to detect
only one or up to two persons. As mentioned in 4.3.2, for the detection of one person,
if more than 3 recent measurements are available, the calculation function will only
select 3 of them to perform trilateration. This ensures that the calculation function
will compute a position for any number of nodes higher than 3. The more nodes are
used, the higher the chance of having at least 2 or 3 of them detect a target.

For the detection of up to two persons, as shown on the algorithm 4, at least 4
sonars must be used and placed in such a way that they form a rectangle. This allows
our system to effectively use a filter (described in5.2.4.1) to remove the ambiguity on
each position calculated with each pair of contiguous sonars. Our algorithm works in
2 steps, it first uses the trilateration formula for 2 measurements (see 4.3.1), with the
measurements produced by each pair of contiguous sonars, to calculate a position
for each pair. It then returns 2 positions in the case 2 different positions have been
computed that are separated from each other with more than 40 cm. In the other
cases, it returns only one position or none if no person has been detected. Our
algorithm is rudimentary however and doesn’t work in all cases, especially when the
2 people are situated more or less in the center of the room. Figure 8 illustrates such
a problematic case. Here, 4 different positions would be generated that are separated
from each other with more than 40 cm. The blue persons are where the 2 persons
are actually located.

5.2.3. Sonar measurement filter

Filter functions are passed from the hera_position module of Sensor_fusion to
the hera_filter module of the Hera application. They are explained in subsections
5.2.3 and 5.2.4 We have implemented a filter that has been specifically designed for
the sonars that are part of our use-case. This one is strongly based on the generic
filter described in 5.3.3.1. In our use-case, we typically set the upper bound value to
0.28 cm/ms. This corresponds to a speed of ±10 km/h. This assumes that a walking
person’s distance to the sonar never varies faster than this limit. This filter differs
from the generic filter 5.3.3.1 with only a few differences.
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Figure 8.: 4 points are possible for 2 persons in the room - Image was made on
draw.io

It makes use of the default measured value of the sonar that was measured in the
warm-up phase (see 5.3.2.1). The warm-up phase is used to define the maximum
distance that can be detected by a sonar, e.g., the distance to the closest wall in front
of the sonar. During the warm-up phase, no target is allowed to be present in the
range of the sonars.

If a measured value is very close to or bigger than this default measured value, the
value measured by the sonar will be filtered out. This has as consequence that only
the relevant measured values are kept, i.e. values that represent the distance of the
sonar to the target, and not the distance to a static object or wall. This assumes
that with a moving target in a sonar’s range, the distance can only be smaller than
the value produced during the warm-up phase.
This filter only permits the measurement to change faster than the upper bound in the
case that the previous measurement couldn’t detect the target. If the measurement’s
value has decreased significantly in a non-gradual way, then that would mean that
the target has just come in the range of the sonar. This measurement should thus
pass the filter.

5.2.4. Position filtering

Each position (or pair of positions in the case of ambiguity) that was generated with
trilateration must pass the following 2 filters.
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5.2.4.1. MinX, MinY and MaxX, MaxY filtering

After having obtained one or two possible target positions with trilateration, we make
them pass through a filter that only keeps the positions that are inside the (MinX,

MinY) and (MaxX, MaxY) bounds specified by the user in launch_hera (5.2.1). Both
the target’s abscissa and ordinate must be inside these bounds for the position to be
valid. The bounds are defined as [MinX, MaxX] for the abscissa and [MinY, MaxY]

for the ordinate.

This filtering of the positions obtained with the trilateration of 2 measurements
is very useful for eliminating the incorrect position. It is especially so in the case
where a pair of sonars is used for the trilateration, and that these sonars are placed
against the same wall in a rectangular room. With well specified bounds, the incorrect
position can always be filtered out. Thanks to this, it is possible to calculate the
target’s position using only 2 sonars.
Figure 9 illustrates this. Here, one would use {0,0} as {MinX, MinY} and {4,2} as
{MaxX, MaxY} values for the parameters in launch_hera. The 2 sonars are placed on
positions (0,2) and (4,2) respectively. The arcs represent all the possible positions
of the target when each sonar’s measurement is considered individually. Using
trilateration, the positions obtained are those 2 where the arcs intersect. The filtering
would only keep as possible position the one that is inside the rectangle, as the other
one violates the MaxY bound.

Figure 9.: Incorrect position identification - Image was made on draw.io
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5.2.4.2. Speed filtering

In addition to the room position filter, we have added a speed filter. This filter is
entirely based on the generic filter (described in5.3.3.1). In the same way as the
sonar filter, we have placed an upper bound of 0.28 cm/ms, which corresponds to
a maximum speed of 10 km/h. Based on the previous calculated position that has
passed the filter, if the current position violates that speed limit, that position is
filtered.

5.3. Hera

Hera is an OTP application we have created that allows fusion of sensor data to
happen on multiple nodes. Thanks to its support for concurrency (using Erlang
processes, 3.3.1.4), it provides the possibility to fusion in a concurrent way several
types of data generated from different sensors. We have designed this application to
be as generic as possible so that it can be used with any type of sensor data for any
use-case. It allows for example to perform sensor fusion on data generated by sonar
sensors, light sensors etc. It is important to point out that the sensor fusion only
considers the most recent obtained data. Calculations using data to perform sensor
fusion only have access to the most recent data from each sensor that is present in
the system. This isn’t such a limitation since there are countless use-cases where only
the most recent data is needed, such as in ours. It also removes the risk/possibility
of having the memory using more and more space until the memory becomes full.
The number of possible applications using Hera is huge. This application isn’t only
destined for GRiSP boards. It can also be used on any device supporting Erlang, as
long as this device supports connectivity and can be equipped with sensors.

5.3.1. Supervision tree

In Erlang, a supervision tree is a tree of processes. There are two kinds of processes in
such a tree. There are the workers and the supervisors. The workers are the modules
containing the code specific to the application and the supervisors are used to manage
the workers or other supervisors. If a child process of a supervisor fail, the latter can
restart it. In order to be a supervisor, a module must implement the supervisor

behaviour [37, 38, 39].
There are four types of possible restart strategies for a child of a supervisor. We

only use two of them in our tree, the rest_for_one and the one_for_one.
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The rest_for_one strategy is used in the case where you want to restart some
processes that are dependent on other processes. If you specify this strategy,
whenever a child process fails, all the other child processes that have been
started by the supervisor after this process are terminated. Then, the failed
process is restarted, followed by all other child processes that have been started
(and forcefully terminated) after this failed process. For example, given the list
of processes to be started in line 7 of this code snippet 5.2, if the process B
fails, then the processes C and D would be restarted after the process B.

The one_for_one strategy is used whenever a process is independent from other
processes. Only the failed process is restarted using this restart strategy.

You can also specify the intensity and the period of the restarts. Assuming the
values MaxR for intensity and MaxT for period, then, if more than MaxR restarts
occur within MaxT seconds, the supervisor terminates all child processes and then
itself [39]. The code snippet 5.2 also illustrates how to specify such values.

init(A,B,C,D) ->
2 MaxRestarts = 6,

MaxSecondsBetweenRestarts = 3600,
4 SupFlags = #{strategy => rest_for_one ,

intensity => MaxRestarts ,
6 period => MaxSecondsBetweenRestarts},

{ok , {SupFlags , [A,B,C,D]}}.

Snippet 5.2: rest_for_one strategy illustration

We only start filter (5.3.3), measurement (5.3.2) and calculation (5.3.6) processes
on GRiSP boards, not when using an emulation of GRiSP boards on PC. We use this
emulation to make the PC act as a gateway for our LiveView application. You can
find the supervision tree in both cases in Figure 10 and in Appendix 29 respectively.
At each level of the tree, processes that are started first sit on the top of the level.
For the restarting strategies, the hera_supersup process for example has defined a
rest_for_one restart strategy for its two children. This has as consequence that if
the process of the hera_sensors_data module fails, then then all other processes of
hera are restarted. The module hera_supersup is the one in charge of assembling the
supervision tree. Concerning the filter, measurement and calculation modules, we use
a pool of processes in order to have the possibility of starting processes of these types
at runtime with custom arguments. The implementation of these pools is inspired of
https://learnyousomeErlang.com/building-applications-with-otp.

https://learnyousomeErlang.com/building-applications-with-otp
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Figure 10.: Supervision tree of Hera on GRiSP boards

5.3.2. Measurements

The module hera_measure allows to perform at the same time multiple types of
measurements. Indeed, one process is started per kind of measurement the user
desires to perform on a device.

We make a distinction between two types of measurements: the measurements that
are synchronized between the nodes and the non-synchronized measurements. These
two types are each characterized by several elements.

The synchronized measurements are characterized by a name which uniquely iden-
tifies a kind of measurement, a measurement function that allows the module
to perform the measurements, and a maximum number of iterations which
can be a finite number or the atom infinity. It defines the number of times the
measurement function will be called. They are also characterized by an upper

bound value that indicates the maximum allowed variation per milliseconds
between two successive measurements, and by a filtering function that
returns a boolean value to indicate when the result of the measurement has to
be filtered out. The upper bound value is supposed to be used by the filter. If
the measurements do not need to pass through a filter, the filtering function
can be replaced with the atom undefined. In this case, the upper bound value
can take any value as it won’t be used by the measurement filter. The calls
to the measurement function are synchronized between all nodes thanks to
hera_synchronization (Section 5.4).

The non-synchronized measurements have the same characteristics as the synchro-
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nized ones, plus a frequency value that indicates in milliseconds the interval
between two calls to the measurement function.

Once the module has received the measurements from the execution of the
measurement function, and the value has successfully passed the filter function,
it sends this value to all nodes that are part of the cluster using a UDP multicast
datagram (see 5.3.4).

When the number of iterations done reaches the maximum number of iterations,
the process enters a hibernation phase where its memory allocation has been reduced
as much as possible [40]. The process can be restarted by calling a restart function
that allows to either keep the same parameters (maximum number of iterations, upper
bound, ...) or to change them. The only characteristic that cannot be changed is the
name of the measurement. You can also indicate when restarting a measurement
phase whether you want to perform a warm-up phase or not.

5.3.2.1. Warm-up

When a series of measurements starts or restarts with the WarmUp parameter set to
true, a warm-up phase of 100 measurements begins. This phase allows Hera to retrieve
the default value of the sensor. At the end of the phase, the module calculates the
median of all sensed measurements. This value is then passed to the filter described
in the next section (5.3.3) before the series of measurements starts. This allows the
filter to use that value for filtering the upcoming measurements.

5.3.3. Filtering of measurements and calculations

Since sensors in general are not accurate 100% of the time, false measurements can
be made. In order to eliminate a significant portion of them, we have implemented
measurement filters in our app. Even by using values that have successfully passed
a measurement filter, it may happen that calculations yield a result that is not
consistent with the result previously calculated, or that the result is simply not
possible in the environment in which the system is located.

Since both measurements and calculations need a filter, we have created a single
module called hera_filter. When a calculation or measurement is started by Hera in
a process, a filter process is started immediately with the associated filter function.
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5.3.3.1. Generic filter

Most of the erroneous measurements/calculations are easy to be detected for appli-
cations where sudden considerable variations are very unlikely to happen. We have
thus implemented a generic filter that is based on this fact. This filter can be used
for a multitude of applications (measurement or calculation of temperature, speed,
humidity, etc.).
All the user has to do is to specify an upperbound on the difference that can have
successive values based on the time difference between them. The upper bound
must be expressed in difference_in_value / milliseconds. This difference in value is
expressed in the same unit as the unit of the result returned by the measurement or
calculation function. For instance, in an application where the measurement function
returns a distance expressed in meters, the user must express the upper bound in
meters/milliseconds.
If a measurement or calculation value is filtered out, and the next value is exactly
the same as that of the filtered one, it may not also be filtered out since the time
difference between them has increased. The consideration of time difference between
measurements and calculations allows the filter to eventually trust a value if it is
measured or calculated repeatably, even after first having changed faster than the
upper bound permits it.

5.3.4. Send messages : UDP multicast

At the beginning of the development, we firstly used the Achlys tool [22, 23], and
more specifically Lasp [25] to propagate nodes’ data measurements across all nodes
part of the cluster using CRDTs. We quickly found out that this method doesn’t allow
to have real-time calculations due to its low speed (see [41, Chapter 11] for results
about the mean convergence time of Lasp on GRiSP boards). Also, as we wanted
real-time calculations, we prioritize fast unreliable communication above slow reliable
communication. That is how we concluded that using UDP as canal of transmission
was the best way as it is faster than TCP and Lasp (see 6.1.2 for the results and
conclusion of our tests with UDP and TCP on GRiSP). Since lots of measurement
and calculation results are sent very frequently, the few occasional losses of UDP
datagrams do not have a visible impact on the correct working of applications similar
to our use-case.

Th necessary code to send messages via UDP is inside the hera_multicast module.
We make use of an UDP multicast group in order to be able to send data to all
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nodes in the cluster even if the topology of the cluster is not known. When the
module starts on a node, the node joins the UDP multicast group with the address
224.0.2.15. We have chosen this address because it is part of the AD-HOC Block I

addresses group and it is unassigned [42]. We connect a node to this group using
the parameter {add_membership, {MultiAddress, InterfaceAddress}} passed to
the gen_udp:open/24 function, where MultiAddress is the multicast group address
and InterfaceAddress is the address of the board. All the parameters needed to
correctly open a connection to this group can be found in Appendix A.4.

Once connected to this multicast group, each node can send data to this group.
All other nodes connected to this group will then receive this data in the form of
a datagram message. When sending data via UDP (a measurement or calculation
result), we put inside a message the name of the data (measurement or calculation),
the name of the node that is sending the value and then finally the data. Including
the node’s name is important for organizing the storage of data on each node 5.3.5.

5.3.5. Data storage

Once other nodes’ data has been received via UDP multicast, it first needs to be
stored before it can be used for calculations. As we focus on real-time functionalities,
we only store the last data sent by each node. The module in charge of storing is
hera_sensors_data. The process started from this module keeps in its state one
dictionary5 per type of measurement. In each dictionary, the data is stored by node
name (the key of the data is the node’s name). The data is stored with a sequence
number and a monotonically increasing timestamp taken by the node at the moment
it stores the data.

The module provides two methods for retrieving the stored data, namely get_data/1
and get_recent_data/1. Both take as argument the name of the data to be retrieved.
The first one returns the whole dictionary containing the data of all nodes and the
second returns the dictionary containing all data obtained and stored less than 1
second before. This second function can be used by calculations that must ignore
stored values that haven’t been updated for a while, to only retrieve recent data.

4http://Erlang.org/doc/man/gen_udp.html#open-2
5http://Erlang.org/doc/man/dict.html

http://Erlang.org/doc/man/gen_udp.html##open-2
http://Erlang.org/doc/man/dict.html
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5.3.5.1. Data logger

The module hera_sensors_data also provides logging functionalities with the func-
tions log_measure and log_calculation. These two functions each respectively
create a directory named measurements or calculations where the corresponding
data will be logged when received. In order to not exceed the low storage capacity of
IoT type nodes (GRiSP board in our case), we only log data on a computer, member
of the multicast group acting as a gateway device. One file is created per node that
sends the data. Each file takes the name of the node, prefixed by the data name.
For our use-case, a file named sonar_node1 is created inside the directory named
measures on our computer in the case it receives a sonar measurement from the node
named node1.
On the boards, we only log the possible errors thrown during execution of the

code. The configurations required for the loggers can be found in Appendix A.2
for the boards’ logger configuration, and in Appendix A.3 for the computer’s logger
configuration.

5.3.6. Calculations

As it is the case for the measurements, different calculations can also be executed
in a concurrent manner. Each specified calculation will start one process. Once a
node has stored the received measurement (5.3.5), this value becomes available for
calculations.
We have defined a type called calculation that is characterized by the name of

the calculation, the calculation function to be used, the frequency to which that
calculation function is executed, the number of iterations to be made (which can
be infinity) and finally a filter function and an upperbound value for this filtering
function. This filtering function is used to filter results obtained with the calculation
function.
Once the result of the calculation successfully passes the filter function, it is sent

to the UDP multicast group.

5.3.7. Genericity

Hera is a framework that can be used for an unlimited number of other use-cases
that perform any calculation on the most recent measurements. It has been designed
in such a way that the only task that is left for the user to do is to specify one or
more measurement and calculation functions. These measurement and calculation
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functions are allowed to return anything as long as it is an Erlang data type. The
user can also specify its own filtering functions to filter the results of these functions.

A user of our Hera framework can for example define the measurement function in
such a way that it returns the value obtained with a temperature sensor. He can then
define a calculation function that calculates the maximum temperature of all stored
temperatures. If the temperature sensor doesn’t always yield correct measurements,
the user can make use of the generic filter or define his own filter function for the
measurements and/or calculations.

5.3.8. Starting the measurements and calculations

The main module hera contains the launch_app function that is used to start the
measurements and calculations. It takes two arguments, a list of measurements (of
type measurement) and a list of calculations (of type calculation).

5.4. Hera_synchronization

We use this app as an Erlang distributed application6 to synchronize the measure-
ments between the nodes. To use this application, one must add the application to
the rebar.config file of the main application as a dependency 3.3.1.5.

Also, in order to synchronize the right measurements, the lines of the snip-
pet 5.3 must be added to the sys.config file of the main application. At the
measurements entry, all the measurements to be done must be inside of tuples of form
{MeasurementName, Boolean} where MeasurementName is the name of the measure-
ment and Boolean is set to true if this series of measurements must be synchronized
between the nodes.

1 {hera_synchronization , [
{measurements , [{MeasurementName , Boolean}]}

3 ]},

Snippet 5.3: Lines to add to the sys.config file to inform which measurements
must be synchronized

5.4.1. Crosstalk between sonars

During our experiments, we have faced a major issue of non-consistent sonar readings
that became only worse the more sonars we used. Making measurements with only one

6http://erlang.org/doc/design_principles/distributed_applications.html

http://erlang.org/doc/design_principles/distributed_applications.html
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sonar is not a problem, but by placing for example two sonars in front of each other,
the measurements would vary a lot even when the target is not moving (the results
of section 6.4.2.2 illustrates this problematic). This problem is called crosstalk and
occurs when a sonar receives the signal of another board [43].
The first purpose of this application is to resolve the crosstalk between sonars for our
use-case, but it can also be used in any other cases where measurements also need to
be synchronized.

5.4.2. Solution

To solve this issue, coordination between the IoT devices is needed. We make use of
globally centralized registered processes that indicate to all nodes of the cluster when
to perform their measurements (see 5.4.2.2 for details of how they works).

The default implementation of the grisp module called pmod_maxsonar doesn’t
allow its users to trigger individual sonar readings. It only gives its users access to
the latest sonar reading. It refreshes by default the latest sonar reading every 50 ms,
performing a new measurement each time. Users here have no control of when to
trigger them. We therefore had to modify the existing implementation to add a new
non continuous mode where the users themselves perform the individual triggers of
sonar measurements. This extension combined with synchronization allows a group
of sonar-equipped nodes to make only one measurement at a time to avoid crosstalk.

5.4.2.1. Distributed application

The default behavior of a centralized algorithm in a cluster of IoT nodes is that if
the node running the algorithm crashes, the functionality offered by this algorithm
is lost. Thankfully for us, Erlang has already developed a solution to this problem,
called distributed applications. Thanks to this solution, if the node running the
application goes down, the application is restarted on another node of the cluster
[44].
To use an OTP application as a distributed application for a certain application,

it must be included as a dependency inside that application’s rebar.config file. It
must also be included inside the relx section of the same file for it to be included
in the application’s release. Unlike other dependency applications, it must not be
part of the .app.src file inside the project. If it were the case, the application would
start on all nodes and not only on one node.
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Each node must know the cluster’s topology in advance in order to be capable
of restarting the distributed application on another node. For this purpose, one
must add the snippet 5.4 inside the sys.config file. The first line contains, after
the keyword distributed, the name of the distributed application, the number of
milliseconds to wait after the node running the application has crashed, and a list.
The list is composed of the name of the first node that must execute the application
first, and of all other nodes that will run the application once all previous nodes in
the order of enunciation have crashed.
The second line refers to all nodes that must be started to run the application.
The third one on the contrary refers to all other nodes that are not mandatory to
be started. Finally, the fourth line is used to indicate within which time all the
mandatory nodes must be started. If the timeout value has elapsed and all specified
mandatory nodes have not started, the node running the application terminates [44].

1 {distributed , [{application_name , 2000, [node1 , {node2 , node3}]}]},
{sync_nodes_mandatory , [node1 , node2 , node3]},

3 {sync_nodes_optional , [optional_node]},
{sync_nodes_timeout , infinity},

Snippet 5.4: Distributed application specification

If the node currently running the application crashes or is no longer contactable, the
next node in the order of enunciation will start the application. If a node that precedes
the current node in the order of enunciation becomes available again afterwards, the
application will stop running on the current node and will restart on that previous
node. Concerning our application hera_synchronization, we have put into place a
restart policy that allows all nodes to continue executing normally without the need
for human intervention. This restart policy is explained in the following section.

5.4.2.2. Global processes

We make use of several global processes in order to make coordination happen by
synchronizing the measurements of all nodes. A global process is a process globally
registered on all nodes of a connected network, i.e., all nodes are aware of this process.
In Erlang, you can retrieve all nodes that are connected to a single node by executing
on that node the Erlang Built-In Function (BIF) nodes() on an Erlang shell. To start
a connection between two nodes, you must execute the erl_inet:ping(NodeName)

function7, where NodeName is the hostname of the node [45, 46].
7http://erlang.org/doc/man/net_adm.html#ping-1

http://erlang.org/doc/man/net_adm.html##ping-1
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Thanks to the fact that hera_synchronization is a distributed application, all
started nodes that are part of the cluster are already connected between each other,
therefore no connection must be performed manually.

Before having turned the application into a distributed application, we designed
an automatic node discovery procedure via UDP multicast. The process is simple:
each node sends on the UDP multicast group a hello message with its hostname
every 2 seconds. When a node receives this message, it will try to ping the sender
node back using the hostname given inside the message and will potentially succeed
doing so. The entire code of this functionality can be found inside the branch called
node-discovery-via-udp of our Hera repository8.

In Erlang, it is possible to communicate with a process if you know its process
identifier (PID). To retrieve the PID of a global process, you can call the function
global:whereis_name(Name)9 where Name is the globally registered name of the
process. We have attributed to each of these processes a specific name. These names
can either be found in the header file hera.hrl, or are sent by the process itself to
the nodes.

We have defined two kinds of global processes: a global process that each node
can contact for indicating that it wishes to start a series of measurements, and a
global process per kind of measurement that has to be synchronized. The latter
is used to send a message to the nodes indicating that it must perform its mea-
surement. The first kind of process is implemented inside the hera_global_sync

module, with its global name being the same as its module name. The second
kind is implemented inside the hera_global_dispatch module. There, the name of
each process is the result of the concatenation of the atom hera_global_dispatch_

and the atom representing the name of the measurement to be performed. For our
use-case for example, we have a global process named hera_global_dispatch_sonar.

The whole procedure that is followed for performing series of synchronized mea-
surements on multiple nodes is explained below.

First, each node wishing to perform a series of measurements sends via a process
started from the hera_synchronization module a message {make_measurement_re-
quest, Name}. Name here is the name of the measurement the node wants to

8https://github.com/guiste10/hera/tree/feature/node-discovery-via-udp
9http://erlang.org/doc/man/global.html#whereis_name-1

https://github.com/guiste10/hera/tree/feature/node-discovery-via-udp
http://erlang.org/doc/man/global.html##whereis_name-1
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perform that must be synchronized with the hera_global_sync process. The
hera_global_sync process then records in a queue corresponding to these mea-
surements, both the node’s name that has sent the message and the process identifier
of the node that has sent the message. This process maintains one queue per mea-
surements that must be synchronized.

Then, each hera_global_dispatch process checks the queue linked to the measure-
ments it oversees. If the queue is empty, it waits for 2 seconds before rechecking the
queue. Otherwise, it removes the first element from the queue and sends a message
to the process of the corresponding node, asking it to perform a measurement. This
message contains the global name of the process itself as well as the name of the
measurement to be performed. Once this measurement has been performed, the node
will recontact the process indicating either that it wishes to continue to perform
measurements or that the measurement it has just performed is the last one it had to
perform in its series. In the first case, the global process will add the node to the end
of the queue before repeating the whole operation.

Since we want the synchronization to be usable for near real-time applications, we
have set a time limit for the global process to wait for the response from the node
that indicates that the measurement has been performed. Based on tests we ran
to find out the average response time, we have decided to set this maximum time
to 200 milliseconds (see the results of our tests at Section 6.3). If a node does not
respond before the end of the time limit, the hera_global_dispatch process restarts
the whole procedure with the node at the beginning of the queue. If the process
nevertheless receives the response from the previous node after the 200 milliseconds,
it will add this node to the end of the queue and that without impacting the 200
milliseconds timeout for the currently followed node.

If the application is restarted on another node, that node will send to all nodes a
message saying that they must resend a message asking to start their measurement.
By acting this way, the new global process hera_global_sync will complete its queues
and the measurements will continue correctly (but maybe not in the same order as
before).
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5.5. Pull request to the GRiSP Erlang Runtime repository

The initial implementation10 of the module which is used to control a Pmod MAXSONAR

on a GRiSP board only allows to use the free run mode, giving its user no control over
when to trigger a sonar reading. As explained before, this mode allows interference
to take place between multiple sonars. The sonar’s datasheet [47] however mentions
that a trigger mode is possible on the Pmod MAXSONAR. We have modified the imple-
mentation of the module in order to be able to use this triggering mode.

The basic implementation only allows to use one method, the get/0 method, which
returns the last value given by the sonar. With the free run mode, a measurement is
given every 50 milliseconds to the GRiSP board via pin 5. This measurement is then
stored in the process state in the last_val variable.

In order to use the trigger mode of the Pmod MAXSONAR, the pin number 4 of the
sensor must be connected to a logical low. This logical low is represented in the grisp
software by the atom output_0. To trigger a value, one just has to connect pin 4 to
a logical high. By default, pin 4 is connected to the value output_1 which is a logical
high and corresponds to the free run mode [47].

In our implementation, we bring a new set_mode/1 function that allows to change
the sonar’s working mode. It takes as parameter an atom whose value can either be
single, disabled or continuous. The single mode is the trigger mode mentioned
above, the continuous mode is the free run mode and the disable mode puts the
sonar to sleep, making it stop emit anything. The get function always fetches the last
value felt by the sensor in continuous and single mode. In the disabled mode, the
undefined atom is returned instead of a numerical value. In the continuous mode,
the value is retrieved in the same way as in the basic implementation. In single mode,
when the get method is called, a trigger is performed, i.e. pin 4 is connected to a
logical high and then directly to a logical low. Our full implementation can be found
in Appendix A.5.

We have done some tests to verify that our new implementation works well. Details
of the tests and results can be found at 6.2 and 6.2.2.

10https://github.com/bastinjul/grisp/blob/1.2.0/src/pmod_maxsonar.erl

https://github.com/bastinjul/grisp/blob/1.2.0/src/pmod_maxsonar.erl
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5.6. Sensor_fusion_live_view

We have designed this application to allow having a graphical representation of what
the nodes sense (or measure) and calculate when Hera is used.

We have integrated a basic but general representation of the data that can be used
for any use case of Hera as well as a graphical representation specific to our use-case.

The installation guide is available in the README.md file of our github project11.
Please note that the application is not to be run on an IoT node, but on a computer
acting as a gateway that is connected to the node’s network.

The website includes three pages for displaying data. Two pages are accessible
via the paths /sonars/measurement and /sonars/calculation at localhost:4000. The
first (resp., second) page displays live measurements (resp., calculations) sent by each
node. An illustration of this page is available in Appendix 31 (resp., 30). A third
page can be accessed via the path /sonars/room and displays a bird’s eye view of the
room. Inside this room, sonars (resp., estimated target’s positions) are represented
by red (resp., cyan) squares. An illustration of this representation is available in
Appendix 32. To show how the live view behaves when a person moves around a
room, we have presented figure 1 as a comic strip. It shows a person moving around
a room from left to right and vice versa. Each cyan square represents a calculation
performed by a single board. If there are 4 squares, it means that all 4 boards have
managed to calculate a position with the measurement’s data of the other nodes. A
cyan square only moves if the board in question sends a different (x,y) position than
the previous one. It is therefore possible that if several calculation or measurement
results are filtered out, the square will stay in place for a long time. In the same
way, the red squares can only move when the board sends its new position. It is also
possible that 2 green squares appear instead of a cyan square. These squares represent
the case where there are two possible positions for the person in the room as in Figure 6.

To display the data sent by the nodes, we connect the application to the UDP
multicast group of the nodes in the same way as in Hera (see 5.3.4). It should be noted
that the sole purpose of this application is to present a live graphical representation
of the data and that nothing is calculated by the application. All data are computed
by the nodes themselves.

11https://github.com/bastinjul/sensor_fusion_live_view/blob/master/README.md

https://github.com/bastinjul/sensor_fusion_live_view/blob/master/README.md
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6. Experiments

6.1. Data sending between GRiSP boards

6.1.1. Setup

In this section, we detail the experiences we have made to help us determine the best
solution to send information between GRiSP boards to achieving our near real-time
application.
To find the best solution, we needed to determine the average time it takes for a

message to arrive from one node to another. On the other hand, we also needed to
evaluate the percentage of data loss.

As mentioned previously in section 5.3.4, we prioritize a fast unreliable transmission
method over a slower transmission method that has a lower percentage of loss.

To determine the average end-to-end delay, i.e. the average time it takes for a
message to be sent from one board to another, we cannot estimate it by first looking
at the GRiSP board’s clock that sends the message and then at the clock of the
receiver when the message is received. Indeed, the clocks on each board contain
different values. To fix this problem, we first calculate the average round trip time
(RTT), i.e. the time it takes for a message to be sent plus the time it takes for the
acknowledgement of this message to come back [48]. Once the average RTT is known,
we can simply divide it by two to obtain an estimate of the average end-to-end delay
[49].
To calculate the average RTT, we make board A send a message to board B

containing the timestamp T1 of the time at which the message is sent. Once board B
has received this message, it immediately sends the message back to board B without
modifying it. Once board A has received the reply of board B, it calculates the RTT
of the message by taking a new timestamp and subtracting T1 to it. Once this is
done, we use the Erlang logger to save it in a file. The operation is repeated a large
number of times (we have chosen series of 1000 iterations) to obtain a good estimation
of the average RTT. The mathematical formula giving the average end-to-end delay
can be found at formula 7.

EndToEndDelay =

∑n=1000
i=1 T2i − T1i

2
(7)
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We have used this technique to calculate the average end-to-end delay for the UDP
multicast medium as well as for the TCP medium. We have also varied the message
sending frequency to see if it has an influence on the calculated value.

In addition to the frequency, we also varied the number of boards to which messages
are sent. For TCP, we have experimented with 2 and 4 boards. For UDP we only
have experimented with two boards. There are technical reasons for this difference.

There is a difference on how UDP and TCP messages are sent and received in
Erlang. A UDP message is sent with a single datagram to the multicast group it
belongs to. Conversely, a TCP message must be sent once to each node of the cluster.
With TCP, the number of packets that must be sent is proportional to the number of
other nodes present in the cluster. Moreover, the only way to send the same message
to all nodes via TCP is to iterate on all sockets that are open to the other nodes and
ask each socket in turn to send the message1. Sending a message to all the cluster’s
nodes must therefore be faster with UDP than with TCP. The only downside is that
UDP is not 100% reliable.

Before explaining how we have obtained the results concerning the reception of
messages with more than 2 boards, we will first explain how sockets work in Erlang.
Both for TCP and UDP, an Erlang process is assigned to each socket. This process is
responsible for processing the messages received through this socket. As a reminder,
processes run concurrently with each other in the Erlang virtual machine.

As mentioned earlier, there is one open socket per connection to other boards with
TCP. It is therefore possible to receive and process concurrently messages coming
from other boards. With UDP on the other hand, there is only one socket for commu-
nicating with all other boards. There is also only one process that is responsible for
processing one by one, in order of arrival, incoming UDP messages. Figure 11 shows
the situation encountered during the simultaneous reception of 3 messages coming
from three different nodes. We can see that if we perform tests with three boards for
UDP and take the timestamp of the reception of the message, only the message M1
will have the correct timestamp. The other 2 won’t because of the delay introduced
by the reception of the previous messages. With TCP, the three messages will have a
nearly correct timestamp as there are 3 processes working concurrently. Under these
conditions, it is possible to recover the average RTT with TCP by having more than
two boards in the cluster, but not with UDP.

1https://github.com/guiste10/hera/blob/0bfe764ed7ecbcb447e9f8a29eb2b6bd25e261fc/
src/hera_test_tcp.erl#L34

https://github.com/guiste10/hera/blob/0bfe764ed7ecbcb447e9f8a29eb2b6bd25e261fc/src/hera_test_tcp.erl##L34
https://github.com/guiste10/hera/blob/0bfe764ed7ecbcb447e9f8a29eb2b6bd25e261fc/src/hera_test_tcp.erl##L34
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Figure 11.: Situation at the reception of messages from 3 nodes at the same time
with TCP and UDP.

In the case of 4 boards with TCP, we have calculated the average RTT in another
way than with 2 boards. For the results with 4 boards, we only consider the highest
RTT value of the 3 messages that were sent to the other boards from board A. We
have opted for this way to take into account the possibility of having a node that
receives all the messages with a lot of delay compared to the others. Because the
messages are sent one by one, the end-to-end delay of the last sent message is the
average RTT for that last message minus the average end-to-end delay between two
boards, as seen in the time-sequence diagram in Figure 12.

Figure 12.: Sending with TCP a message to 3 boards, represented with a time-
sequence diagram.

To calculate the loss percentage of UDP messages, we simply make board A send a
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predefined number of messages to board B and then count the number of messages
board B has received in total. We then calculated the percentage using these two
obtained values. We have repeated this experiment 4 times with sending frequencies
of 50 and 100 milliseconds.

6.1.2. Results

6.1.2.1. UDP multicast

Between 2 GRiSP boards Table 1 shows for different message sending frequencies
the average end-to-end delay obtained during our experiments. The graphs showing
the detailed results of our experiments can be found in Appendix B.3.1.1.

We can deduct from these results that the frequency has almost no effect on the
end-to-end delay and that whatever the frequency, the delay is between 10 and 13 ms
on average and 90 percent of messages are delivered within a delay of 18 ms. These
results are in line with our objective of near real-time computing.

Message sending frequency 50 ms 75 ms 100 ms 200 ms
Average end-to-end delay 11.86 ms 12.8 ms 11.7 ms 10.60 ms
Median end-to-end delay 10.5 ms 11.5 ms 10.5 ms 9.5 ms

90th percentile 18 ms 18 ms 16.5 ms 15.5 ms

Table 1.: Average end-to-end delay per message sending frequency

Loss percentage We have performed this experiment twice with a few minutes
between each measurement and after restarting the boards between the two series of
measurements. During the first series of measurements, the average percentage of
message loss with a frequency of 50 ms was 31.5% and 36.4% with a frequency of 100
milliseconds. During the second series of measurements, they were 24.68% for a 50
ms frequency and 25.04% for a 100 ms frequency.

This difference being quite large, we cannot conclude anything about the percentage
loss between boards because the factors that influence percentage can be numerous
and are unknown to us. Especially since the percentage of loss observed in the tests
carried out to track a person was much lower than the percentages obtained with
those experiments.
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6.1.2.2. Full mesh TCP

Since the frequency does not have a great influence on the end-to-end delay, we have
performed the measurements for TCP with a message frequency of 200ms. The graphs
showing the detailed results of these two experiments can be found in Appendix
B.3.1.2.

Between 2 GRiSP boards We have observed an average delay between two nodes
of 14.83 ms, which is a bit higher than the UDP delay between two boards. This
could be explained by the three-way handshake used by TCP. The 90th percentile is
21.5 ms. The upper limit for 90% of messages is therefore higher than that of UDP.

If our system only used 2 boards, TCP, which is only a few milliseconds slower,
would be a better alternative to UDP because of the percentage of message loss being
zero.

Between 4 GRiSP boards We expected that the end-to-end delay for 4 boards
would be ±3 times the end-to-end delay for 2 boards. Practice shows that the average
total RTT is 144.28 ms, the median is 138 ms, and that the 90th percentile is 181
ms. If we subtract from these values the value of the end-to-end delay between two
boards, we obtain an average delay of 128.44 ms.

This delay with TCP is far too high compared to the delay obtained by using UDP
multicast in order to be usable for near real-time applications. Indeed, if messages
are sent with a frequency of 100 milliseconds, up to 8 messages can be received via
UDP by the last board to receive the messages, compared to 4 for TCP. We therefore
opted to use UDP in our system.

6.2. Triggering of the Pmod MAXSONAR

6.2.1. Setup

We needed to know if our new implementation of the pmod_maxsonar module is
working properly. To do this, we used Erlang’s dbg tool to trace in the terminal the
messages that were sent by the Pmod MAXSONAR to the GRiSP board. By default,
the Pmod MAXSONAR sends one data every 50 milliseconds, i.e. every time a wave
has been transmitted. At this speed, we can see a lot of messages scrolling through
the terminal. In our new implementation, this case corresponds to the continuous

mode. In the disable mode the GRiSP board should not receive a message under
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any circumstances and in the single mode the GRiSP board should only receive a
message after calling the pmod_maxsonar:get() function.

6.2.2. Results

Figure 13 shows a screenshot of the shell when the disabled and single modes
were activated in turn. We can see that when the disabled mode is enabled, no
message arrives from the sonar, even when the get function is called. When we turn
on the single mode and call the get function, a message will arrive after the call. In
continuous mode, messages scroll through the shell in the same way as with the basic
implementation of the module. We can therefore conclude that our implementation
behaves as expected.

Figure 13.: View of the terminal when running the dbg tool and the modes disabled
and single are tested.
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6.3. Average response time to global processes on GRiSP
boards

6.3.1. Setup

We have performed tests to estimate the average time it takes for the global server to
send to a node the request to perform a measurement, plus the response time of the
node performing that measurement (see section 5.4.2.2).
To obtain the average time, for each measurement that must be done by the

boards, we took on the global server the timestamp T1 when sending the perform

measurement message and the timestamp T2 when receiving the response from the
board. We then subtracted T2 by T1 to obtain the RTT time. We used the Erlang
logger to record the results in a file. We have performed this test with 4 boards that
each perform 1000 measurements.

6.3.2. Results

Figure 14 illustrates the results of this experiment. The mean response time is 114.72
ms, the 90th percentile is 144 ms and the 98th percentile is 177 ms. With those results,
we have concluded that a timeout of 200 ms was the best choice as 98% of the boards’
answers to the global server have taken less time.

Figure 14.: Average respond time to a global server using GRiSP boards
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6.4. Person tracking

6.4.1. Setup

This subsection explains the different ways we followed to set up the system and obtain
results for person tracking. Each configuration consists of a unique combination of
the hardware and software settings that are described below.

6.4.1.1. Fixed setup description

All our experiments were performed in an empty room of dimensions 3 x 4 meters.
Each node is a GRiSP embedded system equipped with a Pmod MAXSONAR sensor
connected on its UART port. Each node is placed at a different location in the room
at the same height of ±70 cm above the ground. Each sonar is horizontally directed
towards the center of the room with a certain angle, depending on the experiment.

All nodes start performing measurements at the same time. They then each send
measurements and the resulting calculations to an UDP multicast group. To retrieve
the exchanged information, a computer must be part of this UDP multicast group.
The computer will create one file per type of calculation and measure, and per node.
It then logs to the corresponding file the measures or calculations sent by each node.
We have based the results of 6.4.2 on the information obtained with the computer via
UDP. There is hence a small loss percentage of exchanged measurements/calculations.

For example, if we instruct a cluster of 2 nodes to calculate the position of a single
person in a room, three files will be created per node by the computer. There will be
one file to log the position calculated by the node in the room, one file to log each
distance sensed by the node’s sonar and one file to log the calculation of the person’s
position in the room.

The plots that we will show are based on those files.

6.4.1.2. Variable setups of nodes and tracked persons

Paragraph 6.4.1.2 describes the different ways we can setup the nodes. Paragraph
6.4.1.2 describes the different ways the tracked person can behave. Section 6.4.1.2
introduces some typical configurations we have used by combining different setups of
the nodes with different behaviors of the tracked person.
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Different node setups The nodes’ setup can differ in three ways. Below contains
an explanation for each way.

• Number of nodes We have conducted experiments with one to four nodes.

• Position (x,y) in the room We consider the room we use as a two-dimensional
plan "seen from above". Each node is assigned a coordinate (x,y) based on its
position in the room. This coordinate is used to calculate the coordinate of the
tracked person in the room. As mentioned before, we assume that all nodes are
positioned at the same height above the ground.

• Direction/angle The angle of the sonars to the ground is always the same as the
nodes’ sonars are directed horizontally. We have only brought variations to
the horizontal angle of the sonars. For example, when using 4 nodes, we have
directed their sonars with a certain angle to make them point horizontally to
the center of the room.

Object physical characteristics variations We can make variations to the tracked
human(s) in 2 ways.

• Number of tracked humans We have made experiments with one and two humans.
The number of humans the system can identify and follow is proportional to
the number of nodes composing it. For tracking 2 persons, we would need at
least 4 nodes.

• Movement or position The humans can either move or remain static. Different
moving patterns are possible, for example moving straight, making a circle,
moving randomly etc. The human can also remain static and stay at the same
position. This can be useful to learn about the sonar’s detection pattern for
humans.

Typical setups We have tried different configurations by combining the different
ways of setting up the nodes with different behaviors of the tracked person.

• Single node We made multiple kinds of tests with a single node. In order to have
a better idea of the people detection pattern of the Pmod MAXSONAR, we
have put a single non-moving person in front of this sonar at different positions.
We have also performed tests with a person that moves in front of the sonar.
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Other tests were done successfully with and without the measurement filter to
evaluate how useful it is for our system.

• From 2 to 3 nodes For more than one node, we have imagined two different space
situations in order to test the effect of crosstalk. A first situation where the
sonars are facing each other, and a second situation where the are not. In the
case of 3 nodes, we have tested the latter by making the directions to which
the sonars point form an equilateral triangle.

• 4 nodes Using 4 nodes, we would place them in the form of a rectangle and make
the sonars point to the center of it.

6.4.1.3. Software configuration

We can parameterize our system to use or not the following functionalities.

Crosstalk avoidance When sonars are facing each other, crosstalk can occur if the
sonars are emitting waves at the same time and thus produce falsified measurements.
In order to evaluate the importance of the crosstalk avoidance feature, we have
performed tests with and without activating it at runtime.

Measurement filtering Even without crosstalk, the Pmod MAXSONAR may yield
inaccurate measurements as some glitches may occur randomly. To avoid sending
these glitches to other nodes, we have implemented a measurement filter. To test the
efficiency of this feature, we have performed tests with and without activating it at
runtime.

6.4.2. Results

Using different setups for person tracking 6.4.1, we have conducted several experiments
with the application we developed. Below are the results we obtained for tracking a
human with a different number of sonar-equipped GRiSP boards.

6.4.2.1. Using 1 board

Performing experiments with only one board first is very useful for studying the
individual behavior of the Pmod MAXSONARs. It has enabled us to make important
observations that must be taken into account when using more than one board for
tracking a moving target. The Pmod MAXSONAR’s datasheet [10] has given us a lot
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of valuable information regarding the sonar’s beam pattern. We have experimented
with different series of measurements to have a better understanding of the sonar’s
actual performance for people detection.

Maximum distance for people detection The sonar’s datasheet mentions that this
model of sonar can detect people up to 8 feet (244 cm). We have performed several
series of measurements with a nonmoving human placed at different distances (150,
200 and 250 cm) to see what happens in practice. For each distance, we have also
evaluated the impact of placing the human sideways to the sonar instead of frontally.
Table 2 contains the percentage for the number of times the sonar has yielded a
correct measurement for each case. Even though we have repeated the experiment
for each case several times with a high number of measurements, the percentage isn’t
very accurate as the environment will always have an impact on these results. A sonar
will have it easier to track a big boned person rather than a skinny person for example.

150 cm 200 cm 250 cm
Front 75% 68% 23%
Side 52% 30% 6%

Table 2.: Sonar’s accuracy for people detection

As we can see on Table 2, the orientation of the tracked person has a huge impact
on the sonar’s accuracy. If the person’s body (feet and belly) is orientated to the
sonar, that person can be very well detected at a distance of 200 cm. This plot 15
shows that 150 cm is close enough to achieve good results in the case a nonmoving
person is orientated sideways to the sonar. Based on the results we have obtained,
regardless of how the person is orientated to the sonar, we can say that 150 cm is a
good range limit for applications where the detection of people must be consistent.
For our use-case, this does not necessarily mean that the sonars have to be separated
from each other with 150 cm or less. Suppose for example that a person stands
exactly between 2 sonars that are separated from each other with 3 meters, and
that this person’s position forms a straight line with these 2 sonars. The measured
distances by the sonars should in this case be less than 150 cm.
The datasheet is correct saying that the Pmod MAXSONAR can detect people up to
244 cm. It however didn’t mention how well/consistent it could do so.
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Figure 15.: Distance to a person standing sideways at 150 cm - Obtained with
gnuplot

Horizontal sonar beam width The sonar’s beam width we have observed matches
with the one specified in the Pmod MAXSONAR’s datasheet [10] on chart B (page
8). At 150 cm right in front of the sonar, the observed sonar’s beam width was (only)
80cm. At more than 1 meter away from the sonar, the sonar’s beam does not become
notably wider as one might expect from such a device. It is hard to cover a great
area in a room with this beam’s width.

Moving person By taking the sonar’s beam width into account and not surpassing
a distance limit of 200 cm, we wanted to see how good the sonar could track a human
that moves (and rotates) randomly inside an area that respects those limits. On the
obtained plot (16a), we can see how well the sonar is able track that moving person.
The measurement filter was used to filter out measurements that couldn’t detect the
moving target. In total, a bit more than 72% of the measurements were preserved by
the filter to attain that plot.

Measurement filter We have conducted successive experiments with the measure-
ment filter activated and deactivated. We saw that without filter, the sonar either
gives the distance to the target, the distance to the background/wall, or in the worst
case a distance of ±647 cm in the case even the background couldn’t be detected.
We have obtained this plot 16b with the measurement filter deactivated by making a
person stand face to the sonar at 200 cm. As explained in 6.4.2.1, we can see that a
person is well detected in this particular case.
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(a) Moving randomly - Obtained with gnuplot (b) Standing at 200 cm - Obtained with gnuplot

Figure 16.: Distance to a person

6.4.2.2. Using 2 boards

The results mentioned below were carried out with a person that does not move in
a room. The person is always in more or less the same position in the room for all
experiments with two boards.

We have also conducted tests with a moving person, but given the very small space
where the person can be detected by both sonars at the same time, too little data
has passed the filters for us to be able to draw any conclusion about the data.
In the graphs proposed for 2, 3 and 4 boards, each blue square represents a position
estimated by one board and each red star represents the position of a sonar.

Facing sonars By comparing graphs of Figure 17, we can see that when the synchro-
nization of measurements is activated, there is not much difference in the positions
calculated for tests carried out with or without measurement filters. The points
are more or less all grouped together in a 30 x 30 cm square. On the other hand,
we can see that when the measurement filter and the synchronization are off, the
calculated coordinates are much more dispersed throughout the chart. This is due to
the presence of crosstalk between the 2 sonars.

This is a first example of the importance of synchronization to avoid crosstalk
between sonars.

Other graphs about the experiments’ results with synchronization and without
filters as well as without synchronization and without filters are available in Appendix
B.3.2.1. These graphs show the same trend as those mentioned above.
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(a) With filter and synchroniza-
tion

(b) Without filter and with syn-
chronization

(c) Without filter and synchro-
nization

Figure 17.: Trilateration of a non-moving person inside a room with 2 facing sonars
- Obtained with gnuplot

Non-facing sonars The same philosophy emerges from experiments with sonars
that are perpendicular to each other, as evidenced by the plots of Figure 18. The
rest of the experiments are in Appendix B.3.2.1.

(a) With filter and synchronization (b) Without filter and synchronization

Figure 18.: Trilateration of a non-moving person inside a room with 2 facing sonars
- Obtained with gnuplot

6.4.2.3. Using 3 boards

Non-moving person with anti-crosstalk Figure 19 shows us once again that the
results obtained with and without the measurement filter are not very different from
each other. Moreover, the person is quite well detected. However, some results in
Appendix B.3.2.2 show that even with a filter, some deviations from reality remain.
This shows that the filter is not perfect and needs improvement. We will discuss
these possible improvements at Section 7.2.
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(a) With filter and synchronization (b) Without filter and with synchronization

Figure 19.: Trilateration of a non-moving person inside a room with 3 sonars -
Obtained with gnuplot

Non-moving person without anti cross-talk Figure 20 shows the same experience
of a person at the center of 3 sonars, but this time without the synchronization feature
enabled. We can see once again that this feature is essential because the results
obtained without it are disastrous. The more sonars are used without synchronization,
the more crosstalk is present.

Figure 20.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter and synchronization deactivated - Obtained with gnuplot

Moving person Figure 21 shows the trajectory of a person that describes a circle
obtained in the inner space of the 3 boards.
In the next graphs representing one (or two) person(s) moving, a colour scale is
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located on the right side of the graph. This scale represents the calculations’ iterations
made by one board. As a reminder, there is a 50 ms interval between each iteration.
For example, in graph 21, the positions on the graph were obtained from a 4 second
time interval that starts two seconds after the position calculations are started. The
purpose of these graphs is to show the trajectory as seen on the live view.
We can see in this figure that the trajectory taken by the person is well detected

by our system.

Figure 21.: Trilateration of a moving person inside a room with 3 sonars, with
filter and synchronization activated. The person is describing a circle
between the 3 board - Obtained with gnuplot

We have also conducted another experiment with a moving person. Figure 22 shows
on the right the movement performed by the person and on the left the obtained
result. We can see once again that the movement of that person is more or less well
detected.

6.4.2.4. Using 4 boards

The tests in this section have been performed with the measurement filter and anti-
crosstalk features activated. The tests with 2 and 3 sonars have already shown the
importance of having the anti-crosstalk feature activated.

Non-moving person Figure 23 shows two tests we have performed with a person that
does not move and stands at the center and at the left side of the room respectively.
We can see that in both cases, the person is detected and that its position is correctly
calculated. The results of these two tests are the best we have observed. Indeed,
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(a) Trilateration with filter and synchronization (b) Path followed by the person

Figure 22.: Trilateration of moving person inside a room with 3 sonars - Obtained
with gnuplot

figure 24 shows that the results are not always as good, even by using a filter. We
believe that this lack of accuracy shows the limitation of the sonar we use. On the
right of this figure, the person standing on the top side of the room is less in the
range of the sonars than when standing on the left as on the previous figure (23).
This would explain the difference in detection quality between Figures 23b and 24b.
We believe that this problem would disappear by using sonars that possess a wider
detection beam (as explained in 7.2).

(a) Person on the center of the room (b) Person on the left side of the room

Figure 23.: Trilateration of a non-moving person inside a room with 4 sonars -
Obtained with gnuplot

Another problem that can be seen in Figure 24b, is that because the person is in
an area that is less covered by sonar, less sonars’ measurements were used during the



Chapter 6. Experiments 72

calculation. A lot of the time, only 2 sonar measurements coming from 2 opposite
could be used. The trilateration resulted in 2 possible positions that were not filtered
by this filter 5.2.4.1 as their coordinates don’t violate the allowed limits. This explains
why we can see 2 groups of positions: on on the bottom and one on the top.

This test shows the importance of having a large sonar coverage area and why it is
preferable that at least 3 boards detect the person, so that there is only one possible
position.

The rest of the results we have obtained for a person that is not moving are in
Appendix B.3.2.3. We can draw the same conclusions for those other results.

(a) Person on the center of the room (b) Person on the top side of the room

Figure 24.: Trilateration of non-moving person inside a room with 4 sonars - Ob-
tained with gnuplot

Moving person Figure 25 shows the tested pattern on the right, and the path we
have obtained with a person trying to mimic that pattern. The resemblance between
those two is striking. Figure 26 shows three tests we have carried out where the
tested pattern can be well recognized on the resulting plots. In figure 26b we can see
that the person moves from right to left, in Figure 26a from bottom to top and in
Figure 26c that person makes a circle. That last case is a little less precise than the
two previous ones but it is still well identifiable.

The rest of the results we have obtained for a person that is moving is in Appendix
B.3.2.3. The plots included in these results contain all the positions computed during
each experiment. They do not allow to see the path taken and thus to have an
idea of the order in which those positions have been visited. We can draw the same
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conclusions from those results.

(a) Trilateration of a moving person

(b) Path followed by the person

Figure 25.: Trilateration of moving person inside a room with 4 sonars - Obtained
with gnuplot

(a) Movement from top to bottom (b) Movement from left to right

(c) Person describing a circle

Figure 26.: Trilateration of moving person inside a room with 4 sonars - Obtained
with gnuplot
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Two persons The experiments for this configuration were performed in a different
room than during the previous tests. Figure 27 shows the results we have obtained
with two people in a room. In Figure 27a we can see that our system is able to distin-
guish two nonmoving people very well and that the results obtained are very grouped.
The reason why the detection is very good, is because the 2 persons were stand-
ing not far away from the sonars (at a bit less than 150 cm) right in front of the sonars.

The results in Figure 27b were obtained with two people that start walking from
either side of the room and meet in the middle. We have chosen this moving pattern
for 2 moving people because it covers an area that is well detected by the sonars. On
the graph, we can easily recognize this pattern. We can clearly see in the middle
the point where our system stops considering them as 2 persons because of their
proximity and considers them as one person instead. As explained in section 5.2.2.1,
when the distance between two detected positions is less than 40 cm, we consider
them as a single entity and fusion the two detected positions.
We can also observe that people start moving on both sides of the room. Indeed,

blue dots start on the left and right, which is the beginning of the movement phase.
They then gradually turn into green dots in the middle of the graph.

We have also experimented with two people each standing between two adjacent
boards. Unfortunately, as the locations of the two people were outside the sonars’
detection zones, no result could be obtained for this experiment.

(a) Two non-moving persons away from each other (b) Two moving persons synchronously walking to the
center

Figure 27.: Trilateration of two persons inside a room with 4 sonars - Obtained
with gnuplot
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7. Conclusion

Thanks to the rapid and complete development capabilities offered by GRiSP
boards, we were able to create and test a generic and scalable system that is resilient
to crashes. This indoor person system tracking performs sensor fusion on the sensor-
equipped devices at near real-time. We also have made it available to the great public.
Our system can be used on any sonar-equipped device supporting Erlang. It is made
of reusable components (such as the Hera framework) that can each be reused for an
unlimited number of other use-cases.

Through our thesis, we have demonstrated that the approach we proposed of
performing calculations at the extreme edge of an IoT network is feasible. The
approach has not shown any sign of limitation during the whole process. Furthermore,
we have shown with our LiveView application that our system is interoperable with
current approaches that use edge gateways.

7.1. Results

Chapter 6 presents the results of the most relevant experiments we have performed.
A brief summary of those results is given hereafter.

Good tracking results for one to two persons With 2 or more sonars, the results
obtained for one to 2 persons that move or remain static are very good, provided
that they stand in an area that is well covered by the sonars. By not taking
into account the sonars’ detection area, the results may become significantly
less accurate (or non-existent in the worst cases).
Moving patterns that stay inside the well-covered area are well detected. When
testing with a person that moves in a straight line or in a circle, the pattern
that the person follows is well-recognizable on the obtained graphs. It is also
the case for two moving persons that stand not too close from each other.

Limitations and strengths of the used sonar As we saw in the sonar’s datasheet
and in our results, the area covered by a sonar is quite limited. Once a person
leaves an area that is well covered by at least 2 sonars, the results’ quality is
strongly decreased. The sonar however yields very good results for humans that
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stand/move inside well-covered zones. This explains the good results we have
obtained for those cases.

The very powerful and unavoidable anti-crosstalk system The results with versus
without anti-crosstalk are without call. With this feature disabled, the results
we obtained using more than one sonar are disastrous and do not allow to
determine with a certain consistency where the person is really located. This is
even more true the more sonars are used in the same room.

Necessity of the LiveView It is very hard (if not impossible) to visualize a person’s
location live using incoming raw logs on a computer of that person’s posi-
tion. This is where the LiveView becomes essential, since it renders a nice
representation of the room (including the tracked target(s)) at near real-time.

7.2. Future work

Perform tests with more powerful sonars As mentioned in the previous section, the
range of the Pmod MAXSONAR we used for our experiences is not large enough
to well cover a large area. Better results would be obtained with better sonars.
Pmod MAXSONARs make use of the MaxBotix 1010 LV-MaxSonar-EZ1.
MaxBotix Inc. has manufactured another sonar, the MaxBotix 1000 LV-
MaxSonar-EZ0, that is much better. This version, according to the datasheet,
can detect a person up to approximately 10 feet (3 meters) and has a much
larger coverage area, as shown in Figure 28 [10]. It is possible that other much
more powerful miniature sonars will be produced in the future.

(a) Model MB1010 (b) Model MB1000

Figure 28.: LV-MaxSonar-EZ1’s beam patterns - taken from its data-sheet

Store more than the last obtained measurement For the moment, we only store
on each node the last measurement obtained from all nodes of the cluster. We
have made this choice because our use-case only requires this functionality in its
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current version. To improve our system, we could store more past measurements
to allow the better filter them.

Store and aggregate calculation results For the moment, the results of the calcu-
lations sent by the other boards and itself are not stored in memory. It is
currently therefore not possible to perform operations on them. By adding this
feature, it could for example be interesting to gather the position calculations
of all the nodes in one point and to perform splines using past calculations to
get a smooth trajectory on the live view.

Test our system on GRiSP 2 We are very excited about the increased performance
announced for the second version of the GRiSP. Unfortunately, this version
is not yet available, we were hence not able to test our system on these new
devices.

Automatically determine the position of each board At the moment, with our im-
plementation, we have to specify on each board the position measured by hand
of each board in the room. Moreover, if we change the position of the board,
we would have to encode its new position and send it to the other nodes of the
cluster to ensure that the tracking results remain correct.

With GRiSP boards, we can use other sensors in addition to the Pmod MAX-
SONAR. We can for example equip GRiSP boards with the Pmod NAV which
includes a 3-axis accelerometer and a 3-axis gyroscope [50]. With this sensor,
it is possible to calculate in real-time the position of each board. Thanks to
Hera’s genericity, one just has to specify in our system a measurement that uses
motion data from the sensor and a calculation that will calculate the position of
the board from this information. Each board should also start the calculation
of the position from the same position in the room. This way each board would
be able to calculate its exact (x,y) position in the room.

This would also make it possible to move the boards without having to specify
new coordinates.

Improve trilateration formulas by integrating the angles of each sonar With the
formulas we use for the trilateration of a person, the sonars cannot be tilted
with respect to the ground, otherwise the result of the calculation would be
degraded. This represents a limitation. By integrating the angles in relation to
the vertical and horizontal planes, it would be possible for example to place the
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sonars in the same way as surveillance cameras, i.e., in the upper corners of a
room.

By combining this with the idea of the previous point, it would be possible
to calculate in real-time the exact position of a person while having moving
boards (we can imagine boards fixed on drones that would go from room to
room to track a person moving in his house).

Possibility to choose the communication method We have showed for our use-case
that we needed to use UDP rather than TCP to perform computations at near
real-time. We therefore equipped Hera with this only means of communication
between nodes. However, not all use-cases need to operate at near real-time.
Some of them rather need no data to be lost and therefore should use TCP
as a way to communicate. It would be good to add the possibility of choosing
between UDP and TCP to transmit data through the cluster.

Easy to assemble live view page for any use-case For the moment, only 3 pages
of our LiveView app allow to see live what the nodes are sending to the UDP
multicast group. One of these pages is specific to our use-case and the two others
are just text information. As we have explained before, having a graphical
representation is very important in a live application. It would therefore be
very useful to have an API that allows users to compose with little code their
own live view page, like we did for the representation of a room.

Improve the detection of more than one person It is hard to determine the exact
number of sonars required to track a fixed number of persons. How many sonars
are needed to detect 2 persons? This is a question we asked ourselves when
we started talking about tracking a second person in a room. As discussed
in section 5.2.2.1, with 4 sonars and two people, there are situations where
there are 4 possible positions where the two people can be. We have therefore
concluded that we would need at least 5 sonars (and a better algorithm) for
the detection of two people.

It would be interesting to be able to determine, for a given number of individuals
in a room, the minimum number of sonars required as well as their location in
order to be able to detect all of them correctly.
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A. Source Code

A.1. sensor_fusion

The full source code of this application can be found on our Github repository
: https://github.com/bastinjul/sensor_fusion. The section 5.2 explains this
source code.

A.1.1. hera_position

-spec launch_hera(PosX :: integer(), PosY :: integer(), NodeId :: integer(), {
MinX :: integer(), MinY :: integer()}, {MaxX :: integer(), MaxY :: integer
()}) -> any().

2 launch_hera(PosX , PosY , NodeId , {MinX , MinY}, {MaxX , MaxY}) ->
pmod_maxsonar:set_mode(single),

4 Measurements = [
hera:get_synchronized_measurement(sonar , fun() -> sonar_measurement ()

end , fun(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) ->
filter_sonar(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) end ,
0.14, infinity),

6 hera:get_unsynchronized_measurement(pos , fun() -> {ok , #{x => PosX , y
=> PosY , node_id => NodeId}} end , undefined , 0.28, 3, 500)
],

8 Calculations = [hera:get_calculation(position , fun() -> calc_position(
NodeId , {MinX , MinY}, {MaxX , MaxY}) end , 50, infinity , fun(CurrVal ,
PrevVal , TimeDiff , UpperBound , Args) -> filter_position(CurrVal , PrevVal ,
TimeDiff , UpperBound , Args) end , 0.28)],
hera:launch_app(Measurements , Calculations).

10

launch_hera(PosX , PosY , NodeId , MaxIteration , {MinX , MinY}, {MaxX , MaxY}) ->
12 pmod_maxsonar:set_mode(single),

Measurements = [
14 hera:get_synchronized_measurement(sonar , fun() -> sonar_measurement ()

end , fun(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) ->
filter_sonar(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) end ,
0.14, MaxIteration),

hera:get_unsynchronized_measurement(pos , fun() -> {ok , #{x => PosX , y
=> PosY , node_id => NodeId}} end , undefined , 0.28, 3, 500)

16 ],
Calculations = [hera:get_calculation(position , fun() -> calc_position(
NodeId , {MinX , MinY}, {MaxX , MaxY}) end , 50, MaxIteration , fun(CurrVal ,
PrevVal , TimeDiff , UpperBound , Args) -> filter_position(CurrVal , PrevVal ,
TimeDiff , UpperBound , Args) end , 0.28)],

18 hera:launch_app(Measurements , Calculations).

https://github.com/bastinjul/sensor_fusion


Chapter A. Source Code 82

20 launch_hera(PosX , PosY , NodeId , Frequency , MaxIteration , {MinX , MinY}, {MaxX ,
MaxY}) ->
Measurements = [

22 hera:get_unsynchronized_measurement(sonar , fun() -> sonar_measurement
() end , fun(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) ->
filter_sonar(CurrVal , PrevVal , TimeDiff , UpperBound , DefaultMeas) end ,
0.14, MaxIteration , Frequency),

hera:get_unsynchronized_measurement(pos , fun() -> {ok , #{x => PosX , y
=> PosY , node_id => NodeId}} end , undefined , 0.28, 3, 500)

24 ],
Calculations = [hera:get_calculation(position , fun() -> calc_position(
NodeId , {MinX , MinY}, {MaxX , MaxY}) end , 50, MaxIteration , fun(CurrVal ,
PrevVal , TimeDiff , UpperBound , Args) -> filter_position(CurrVal , PrevVal ,
TimeDiff , UpperBound , Args) end , 0.28)],

26 %Calculations = [], % no calculation
hera:launch_app(Measurements , Calculations).

28

restart(Frequency , MaxIterations) ->
30 restart_measurement(MaxIterations),

restart_calculation(Frequency , MaxIterations).
32

restart_calculation(Frequency , MaxIterations) ->
34 hera:restart_calculation(position , Frequency , MaxIterations).

36 restart_measurement(MaxIterations) ->
hera:restart_measurement(pos , false),

38 hera:restart_sync_measurement(sonar , MaxIterations , false).

Snippet A.1: API of hera_position

A.1.2. Configuration files

The section 5.3.5.1 refers to the following code snippets.

{logger_level , notice},
2 {logger , [

%% Console logger
4 {handler , default , logger_disk_log_h ,

#{config => #{
6 file => "logs/notice",

type => wrap ,
8 max_no_files => 10,

max_no_bytes => 1048576 , % 10 x 1mb
10 filesync_repeat_interval => 3000

},
12 filters => [{notice , {fun logger_filters:level/2, {stop , neq ,

notice}}}],
level => notice ,

14 formatter => {logger_formatter , #{single_line => true , max_size =>
1024}}}

},
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16

%% Disk logger for error
18 {handler , disk_log , logger_disk_log_h ,

#{config => #{
20 file => "logs/error",

type => wrap ,
22 max_no_files => 10,

max_no_bytes => 1048576 , % 10 x 1mb
24 filesync_repeat_interval => 3000

},
26 level => error ,

formatter => {logger_formatter , #{single_line => false}}}
28 }

]}

Snippet A.2: Configuration of loggers on IoT devices

{logger_level , all},
2 {logger , [

%% Console logger
4 {handler , default , logger_std_h ,

#{level => notice ,
6 formatter => {logger_formatter , #{single_line => false}}}

},
8

%% Disk logger for warning
10 {handler , disk_log , logger_disk_log_h ,

#{config => #{
12 file => "logs/warning",

type => wrap ,
14 max_no_files => 10,

max_no_bytes => 512000 % 10 x 5mb
16 },

level => warning ,
18 formatter => {logger_formatter , #{single_line => true , max_size

=> 256}}}
}

20 ]}

Snippet A.3: Configuration of loggers for emulation on computer

A.2. Hera

The full source code of this application can be found on our Github repository :
https://github.com/guiste10/hera. Section 5.3 talks about this application.

https://github.com/guiste10/hera
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A.2.1. hera_multicast

The section 5.3.4 is talking about UDP multicast group connexion.

{ok , Sock} = gen_udp:open(? MULTICAST_PORT , [
2 binary ,

inet ,
4 {active , true},

{multicast_if , OwnAddr}, %specify the network interface to use to send
multicast

6 {multicast_loop , false}, %no return of the packets
{reuseaddr , true},

8 {add_membership , {?MULTICAST_ADDR , OwnAddr}} %join a multicast group and
use the specified network interface

]),

Snippet A.4: Entire parameters to open a multicast connection

A.3. hera_synchronization

The full source code of this application can be found on our Github repository :
https://github.com/bastinjul/hera_synchronization. Section 5.4 talk about
this application.

A.4. sensor_fusion_live_view

The full source code of this application can be found on our Github repository : https:
//github.com/bastinjul/sensor_fusion_live_view. Section 5.6 talk about this
application.

A.5. pmod_maxsonar module

We talk about this new implemetation in the section 5.5.

% @doc
2 % <a href="https :// store.digilentinc.com/pmodmaxsonar -maxbotix -ultrasonic -

range -finder/">
% Pmod MAXSONAR

4 % </a>
% module.

6 %
% The Pmod MAXSONAR cyclically sends measurements via the UART interface.

8 % This module converts and stores the latest measurement.
%

10 % Start the driver with

https://github.com/bastinjul/hera_synchronization
https://github.com/bastinjul/sensor_fusion_live_view
https://github.com/bastinjul/sensor_fusion_live_view
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% ‘‘‘
12 % 1> grisp:add_device(uart , pmod_maxsonar).

% ’’’
14 % @end

-module(pmod_maxsonar).
16

-behaviour(gen_server).
18

% API
20 -export([start_link /2]).

-export([get/0]).
22 -export([set_mode /1]).

24 % Callbacks
-export([init/1]).

26 -export([handle_call /3]).
-export([handle_cast /2]).

28 -export([handle_info /2]).
-export([code_change /3]).

30 -export([terminate /2]).

32 %--- Records
-------------------------------------------------------------------

34 -record(state , {
port ,

36 last_val ,
callers :: list(),

38 mode :: disabled %% in this mode returns undefined when getting a value
| single %% Triggering mode

40 | continuous %% Free run mode
}).

42

%--- API
-----------------------------------------------------------------------

44

% @private
46 start_link(Slot , _Opts) ->

gen_server:start_link({local , ?MODULE}, ?MODULE , Slot , []).
48

% @doc Get the latest measured distance in inches.
50 -spec get() -> integer ().

get() ->
52 gen_server:call(?MODULE , get_value).

54 -spec set_mode(disabled | continuous | single) -> any().
set_mode(Mode) ->

56 gen_server:call(?MODULE , {set_mode , Mode}).

58 %--- Callbacks
-----------------------------------------------------------------
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60 % @private
init(Slot = uart) ->

62 Port = open_port({spawn_driver , "grisp_termios_drv"}, [binary]),
grisp_devices:register(Slot , ?MODULE),

64 grisp_gpio:configure(uart_2_txd , output_1), %% by default continuous mode
{ok , #state{port = Port , mode = continuous , callers = []}}.

66

% @private
68 handle_call(get_value , _From , #state{mode = disabled} = State) ->

{reply , undefined , State};
70 handle_call(get_value , _From , #state{last_val = Val , mode = continuous} =

State) ->
{reply , Val , State};

72 handle_call(get_value , From , #state{mode = single , callers = Callers} = State)
->

case length(Callers) of
74 0 ->

grisp_gpio:configure(uart_2_txd , output_1),
76 grisp_gpio:configure(uart_2_txd , output_0);

_ -> ok
78 end ,

{noreply , State#state{callers = State#state.callers ++ [From]}};
80 handle_call({set_mode , disabled}, _From , State) ->

grisp_gpio:configure(uart_2_txd , output_0),
82 {reply , ok , State#state{mode = disabled}};

handle_call({set_mode , single}, _From , State) ->
84 grisp_gpio:configure(uart_2_txd , output_0),

{reply , ok , State#state{mode = single}};
86 handle_call({set_mode , continuous}, _From , State) ->

grisp_gpio:configure(uart_2_txd , output_1),
88 {reply , ok , State#state{mode = continuous}}.

90 % @private
handle_cast(Request , _State) -> error({unknown_cast , Request}).

92

% @private
94 handle_info({Port , {data , Data}}, #state{port = Port , mode = continuous} =

State) ->
{noreply , State#state{last_val = decode(Data , State)}};

96 handle_info({Port , {data , Data}}, #state{port = Port , mode = single , callers =
Callers} = State) ->

lists:map(fun(C) -> gen_server:reply(C, decode(Data , State)) end , Callers),
98 {noreply , State#state{port = Port , callers = []}}.

100 % @private
code_change(_OldVsn , State , _Extra) -> {ok , State}.

102

% @private
104 terminate(_Reason , _State) -> ok.
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106 % @private
decode(Data , State) ->

108 case Data of
% Format of response is ’Rxxx\n’ where xxx is the decimal

110 % representation of the measured range in inches (2.54cm)
% (left -padded with zeros - so there are always three digits)

112 <<$R, D1, D2, D3, $\n>> when $0 =< D1, D1 =< $9,
$0 =< D2 , D2 =< $9,

114 $0 =< D3 , D3 =< $9 ->
% Val is given in inches

116 (D1 - $0) * 100 + (D2 - $0) * 10 + (D3 - $0);
% Sometimes for no obvious reason we receive

118 % a different value from the sonar.
% Instead of $R we get two garbage characters

120 <<_, _, D1 , D2, D3, $\n>> when $0 =< D1 , D1 =< $9 ,
$0 =< D2 , D2 =< $9,

122 $0 =< D3 , D3 =< $9 ->
% Val is given in inches

124 (D1 - $0) * 100 + (D2 - $0) * 10 + (D3 - $0);
_ ->

126 State#state.last_val
end.

Snippet A.5: Entire parameters to open a multicast connection
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B. Figures

B.1. Sensor_fusion

B.1.1. Supervision tree

We talk about the supervision trees of Hera in section 5.3.1.

Figure 29.: Supervision tree of Hera on a computer on a emulation of GRiSP boards

B.2. LiveView

We talk about these illustrations of our LiveView at section 5.6.
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Figure 30.: Visual of the calculations LiveView page
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Figure 31.: Visual of the measurements LiveView page
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Figure 32.: Visual of the room LiveView page
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B.3. Experiments

B.3.1. Data sending between GRiSP boards

The section 6.1.2 talk about the results obtained by the following graphs.

B.3.1.1. UDP multicast

Figure 33.: RTT between two GRiSP boards using UDP multicast group by sending
messages every 50 ms
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Figure 34.: RTT between two GRiSP boards using UDP multicast group by sending
messages every 75 ms

Figure 35.: RTT between two GRiSP boards using UDP multicast group by sending
messages every 100 ms
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Figure 36.: RTT between two GRiSP boards using UDP multicast group by sending
messages every 200 ms

B.3.1.2. TCP

Figure 37.: RTT between two GRiSP boards using TCP by sending messages every
200 ms
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Figure 38.: Total RTT between four GRiSP boards using TCP by sending messages
every 200 ms



97 B.3. Experiments

B.3.2. Person Tracking

B.3.2.1. 2 sonars

The results of the following results are discussed in section 6.4.2.2.

(a) With filter deactivated and synchronization acti-
vated

(b) With filter deactivated and synchronization acti-
vated

(c) With filter and synchronization deactivated (d) With filter and synchronization deactivated

Figure 39.: Trilateration of a non-moving person inside a room with 2 facing sonars,
with filter deactivated and synchronization activated. Obtained with
gnuplot
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Figure 40.: Trilateration of a non-moving person inside a room with 2 non-facing
sonars, with filter and synchronization activated. Obtained with gnuplot

Figure 41.: Trilateration of a non-moving person inside a room with 2 non-facing
sonars, with filter deactivated and synchronization ativated. Obtained
with gnuplot
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Figure 42.: Trilateration of a non-moving person inside a room with 2 non-facing
sonars, with filter and synchronization deactivated. Obtained with
gnuplot

B.3.2.2. 3 sonars

The results of the following results are discussed in section 6.4.2.3.
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Figure 43.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter and synchronization activated. Obtained with gnuplot
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Figure 44.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter deactivated and synchronization activated. Obtained with gnuplot

Figure 45.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter and synchronization deactivated. Obtained with gnuplot
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B.3.2.3. 4 sonars

The results of the following results are discussed in section 6.4.2.4.

(a) Person on the centrer of the room. (b) Person on the centrer of the room.

(c) Person on the right side of the room. (d) Person on the bottom side of the room.

Figure 46.: Trilateration of a non-moving person inside a room with 4 sonars.
Obtained with gnuplot
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(a) Person going from the bottom to the top of the
room. (b) Person going from left to right the room.

Figure 47.: Trilateration of a moving person inside a room with 4 sonars. Obtained
with gnuplot

(a) Trilateration of a moving person

(b) Path followed by the person

Figure 48.: Trilateration of moving person inside a room with 4 sonars. Obtained
with gnuplot
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(a) Trilateration of a moving person

(b) Path followed by the person

Figure 49.: Trilateration of moving person inside a room with 4 sonars. Obtained
with gnuplot

(a) Trilateration of a moving person

(b) Path followed by the person

Figure 50.: Trilateration of moving person inside a room with 4 sonars. Obtained
with gnuplot
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Figure 51.: Trilateration of a moving person inside a room with 4 sonars. Person
describing a circle in the room. Obtained with gnuplot
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C. User manual

C.1. Installation

Since our system works on GRiSP boards, you have to do the complete installation
of grisp1. Then deploy our system on GRiSP boards, you need to clone our
Sensor_fusion project2. To be able to see a person moving live on your pc, you
need to clone our Sensor_fusion_live_view application3. Then please follow the
steps to install the necessary tools in the following sections.

C.1.1. Software versions

When developing our system, we were using precise versions of Erlang, rebar3,
rebar3 plugins, Elixir and mix. You can find these versions on the table 3.

You can quickly verify all your installed current versions using the following
command :

1 rebar3 --version && rebar3 plugins list && mix --version

Erlang rebar3 rebar3_hex rebar3_grisp Elixir/mix
Erlang/OTP 22.0 3.13.0/lastest 6.9.6 1.3.0 1.10.3

Table 3.: Software versions

C.1.2. Updating versions

If your current versions of Erlang and rebar3 plugins are lower (or greater in the
case of Erlang) than the ones listed above and the deployment on the GRiSP boards

is not working, we recommend you to follow the procedures below in order to update
your versions.

1https://github.com/grisp/grisp/wiki/Setting-Up-a-Development-Environment
2https://github.com/bastinjul/sensor_fusion
3https://github.com/bastinjul/sensor_fusion_live_view

https://github.com/grisp/grisp/wiki/Setting-Up-a-Development-Environment
https://github.com/bastinjul/sensor_fusion
https://github.com/bastinjul/sensor_fusion_live_view
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C.1.2.1. Erlang 22.0

We highly recommend to use the asdf tool in order to be able to install multiple
versions of Erlang on your device. Once asdf4 and its Erlang plugin5 are installed,
you just have to run the following command to install and use the right Erlang version
:

1 asdf install erlang 22.0 && asdf global erlang 22.0

You can verify that the version is correctly set by running asdf current.

C.1.2.2. Rebar3 plugins

The following course of action has taken place during the development of our system,
when we were facing a problem of versions that caused troubles with the logging
functionality (section 5.3.5.1).
Firstly, execute the below command

1 rebar3 as global plugins upgrade <plugin_name >

in order to upgrade [51] the versions of the two rebar3 plugins listed above. Secondly,
remove the directory containing the rebar3 plugins and update rebar3 using this
command

1 rm -r ~/. cache/rebar3/plugins && rebar3 update

in order to download effectively the right versions of the plugins.
Lastly, before deploying our system on GRiSP boards, remove the _build directory

located inside the sensor_fusion repository if this directory exists.
That’s it! You can now deploy our system on the GRiSP boards (section C.2).

C.1.3. LiveView

In order to be able to see the live movements of a person in a room via our
sensor_fusion_live_view application, it is necessary to do the entire installation

4https://asdf-vm.com/#/core-manage-asdf-vm
5https://github.com/asdf-vm/asdf-Erlang

https://asdf-vm.com/##/core-manage-asdf-vm
https://github.com/asdf-vm/asdf-Erlang
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of the phoenix tool. The complete tutorial to perform this installation can be found
at the following link: https://hexdocs.pm/phoenix/installation.html.

The procedure to follow to complete the installation of our application is included
in the README of our github repository6.

C.2. Deployment

There are two possible deployments of our application. It can either be deployed on
GRiSP boards or on PC’s. The deployment on a PC is used for emulating a GRiSP

board 7 that can recover GRiSP boards’ data such as measurements and results of
calculations.
There exists several differences between the two deployment at the Hera imple-

mentation level. Depending on the hardware, there are differences in functionalities,
particularly in terms of the modules that are launched and for the logging of data
(see sections 5.3.1 and 5.3.5.1 for more information).

There are two ways for the boards and computer to communicate between each
other: either via an existing wifi network or via an ADHOC wifi network. The
different ways to deploy are explained inside the README.md file of our project8.

C.3. Launching the system

C.3.1. Sensor_fusion

Once our sensor_fusion application is deployed on the GRiSP boards and the
GRiSP boards are started (the two leds on each board turn red when the GRiSP
boards have finished their boot phase and our application is started), you have to
connect to each of them to launch the application. The command to connect to the
GRiSP board is the following:

1 $ erl -sname <shell_name > -remsh sensor_fusion@my_grisp_board_X
-setcookie MyCookie

Your have to replace <shell_name> by the name you want to give to your shell.
Note that two shells cannot have the same name. You also need to replace the "X"

6https://github.com/bastinjul/sensor_fusion_live_view/blob/master/README.md
7https://github.com/grisp/grisp_emulation
8https://github.com/bastinjul/sensor_fusion/blob/master/README.md

https://hexdocs.pm/phoenix/installation.html
https://github.com/bastinjul/sensor_fusion_live_view/blob/master/README.md
https://github.com/grisp/grisp_emulation
https://github.com/bastinjul/sensor_fusion/blob/master/README.md
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in the name of the board by the corresponding number.

Once connected, you just have to start the application with one of the available
commands described in section 5.2.1.

C.3.2. LiveView

You only need to run the command mix phx.server in order to launch the LiveView
application. A view of the three web pages can be found in appendix A.4 and are
explained in the section 5.6.

C.4. Using Hera and Hera_synchronization for your own
project

If you want to use Hera and Hera_synchronization to perform your own sensor merge,
please follow the configuration examples for your project in sections 5.2 and 5.4.

C.5. Hera Runtime API

The figure 52 illustrates the different functions of the Hera application. For more
information about all functions, open the file <hera_root>/doc/hera.html of Hera.
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Figure 52.: Hera API





113

Bibliography

[1] D. Evans, “The internet of things: How the next evolution of the internet is
changing everything,” Cisco IBSG White Paper, 2011.

[2] “How many iot devices are there in 2020?.” https://techjury.net/blog/

how-many-iot-devices-are-there/#gref.

[3] “The internet of things: a movement, not a market.”
https://news.ihsmarkit.com/prviewer/release_only/slug/

number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says.

[4] “The drive towards intelligent edge comput-
ing?.” https://medium.com/datadriveninvestor/

the-drive-towards-intelligent-edge-computing-f6db3c425332.

[5] “Iot: Understanding the shift from cloud to edge computing.” https://

internetofbusiness.com/shift-from-cloud-to-edge-computing/.

[6] “What is sensor fusion?.” https://whatis.techtarget.com/definition/

sensor-fusion.

[7] D. o. E. United Nations and S. Affairs, “World population ageing 2017 - highlights,”
2017.

[8] C. P. R. Yosry S. Morsi, Anupam Shukla, Optimizing Assistive Technologies for
Aging Populations. page 173, AMTCP.

[9] “What does real-time mean and when is it used?.” https://www.

microcontrollertips.com/faq-real-time-mean/.

[10] “Lv-maxsonar R©-ezTM series - data-sheet.” https://maxbotix.com/

documents/LV-MaxSonar-EZ_Datasheet.pdf?_ga=2.24468986.1132479797.

1595168189-432722846.1590669867.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646, Oct 2016.

[12] “What is edge computing: The network edge explained.” https://www.

cloudwards.net/what-is-edge-computing/.

https://techjury.net/blog/how-many-iot-devices-are-there/#gref
https://techjury.net/blog/how-many-iot-devices-are-there/#gref
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
https://medium.com/datadriveninvestor/the-drive-towards-intelligent-edge-computing-f6db3c425332
https://medium.com/datadriveninvestor/the-drive-towards-intelligent-edge-computing-f6db3c425332
https://internetofbusiness.com/shift-from-cloud-to-edge-computing/
https://internetofbusiness.com/shift-from-cloud-to-edge-computing/
https://whatis.techtarget.com/definition/sensor-fusion
https://whatis.techtarget.com/definition/sensor-fusion
https://www.microcontrollertips.com/faq-real-time-mean/
https://www.microcontrollertips.com/faq-real-time-mean/
https://maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf?_ga=2.24468986.1132479797.1595168189-432722846.1590669867
https://maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf?_ga=2.24468986.1132479797.1595168189-432722846.1590669867
https://maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf?_ga=2.24468986.1132479797.1595168189-432722846.1590669867
https://www.cloudwards.net/what-is-edge-computing/
https://www.cloudwards.net/what-is-edge-computing/


Bibliography 114

[13] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, “Globally
distributed content delivery,” IEEE Internet Computing, vol. 6, no. 5, pp. 50–58,
2002.

[14] E. Nygren, R. Sitaraman, and J. Sun, “The akamai network: a platform for
high-performance internet applications.,” Operating Systems Review, vol. 44,
pp. 2–19, 01 2010.

[15] “Edge computing vs. fog computing: Definitions and enterprise uses.”
https://www.cisco.com/c/en/us/solutions/enterprise-networks/

edge-computing.html.

[16] F. Bonomi and R. Milito, “Fog computing and its role in the internet of things,”
Proceedings of the MCC workshop on Mobile Cloud Computing, 08 2012.

[17] D. R. Barik, A. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. Lenka, H. Dubey,
K. Mankodiya, and V. Kumar, “Mist data: Leveraging mist computing for secure
and scalable architecture for smart and connected health,” Procedia Computer
Science, vol. 125, pp. 647–653, 01 2018.

[18] “Cloud vs fog vs mist computing, which one
should you use?.” https://radiocrafts.com/

cloud-vs-fog-vs-mist-computing-which-one-should-you-use/#:~:

text=Mist.

[19] L. Yang and B. Liu, “Temporal data fusion at the edge,” 07 2019.

[20] A. Misra, “The cognitive edge: Promoting energy-efficient, collabora-
tive sensing by iot personal devices.” https://www.cloudwards.net/

what-is-edge-computing/, SmartEdge 2019.

[21] “Cognitive edge computing.” http://cogedge.ece.utexas.edu/.

[22] I. Kopestenski and P. Van Roy, “Achlys: Towards a framework for distributed
storage and generic computing applications for wireless iot edge networks with
lasp on grisp,” pp. 875–881, 2019.

[23] I. Kopestenski and P. Roy, “Erlang as an enabling technology for resilient general-
purpose applications on edge iot networks,” 08 2019.

[24] C. Meiklejohn and H. Miller, “Partisan: Enabling cloud-scale erlang applications,”
02 2018.

https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-computing.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-computing.html
https://radiocrafts.com/cloud-vs-fog-vs-mist-computing-which-one-should-you-use/#:~:text=Mist
https://radiocrafts.com/cloud-vs-fog-vs-mist-computing-which-one-should-you-use/#:~:text=Mist
https://radiocrafts.com/cloud-vs-fog-vs-mist-computing-which-one-should-you-use/#:~:text=Mist
https://www.cloudwards.net/what-is-edge-computing/
https://www.cloudwards.net/what-is-edge-computing/
http://cogedge.ece.utexas.edu/


115 Bibliography

[25] C. Meiklejohn and P. V. Roy, “Lasp: a language for distributed, coordination-free
programming,” in PPDP, 2015.

[26] M. S. Nuno Preguiça, Carlos Baquero, “Conflict-free replicated data types,” 02
2018.

[27] C. F. Sturgess B.N., “The surveying handbook, chapter 12:802.11b/g/n trilatera-
tion,” pp. 234–270, 1995.

[28] J. Armstrong, “A history of erlang,” 01 2007.

[29] “Hitchhiker’s tour of the beam.” http://www.erlang-factory.com/upload/

presentations/708/HitchhikersTouroftheBEAM.pdf.

[30] “Elixir.” https://elixir-lang.org/.

[31] S. Juric, Elixir in action. Manning Publications Co., second edition ed., 2019.

[32] “Mix.” https://hexdocs.pm/mix/Mix.html.

[33] “Phoenix framework.” https://www.phoenixframework.org/.

[34] “Phoenix liveview.” https://hexdocs.pm/phoenix_live_view/Phoenix.

LiveView.html.

[35] “True_range_multilateration: Two cartesian dimensions, two mea-
sured slant ranges.” https://en.wikipedia.org/wiki/True_range_

multilateration#Two_Cartesian_dimensions,_two_measured_slant_

ranges_(Trilateration.

[36] J. Armstrong, Programming Erlang. Pragmatic Bookshelf, second edition ed.,
2013.

[37] “Who supervises the supervisors?.” https://learnyousomeerlang.com/

supervisors.

[38] J. Armstrong, Programming Erlang. Pragmatic Bookshelf, second edition ed.,
2013.

[39] “Module supervisor.” https://erlang.org/doc/man/supervisor.html.

[40] “Process hibernation.” http://erlang.org/doc/man/erlang.html#

hibernate-3.

http://www.erlang-factory.com/upload/presentations/708/HitchhikersTouroftheBEAM.pdf
http://www.erlang-factory.com/upload/presentations/708/HitchhikersTouroftheBEAM.pdf
https://elixir-lang.org/
https://hexdocs.pm/mix/Mix.html
https://www.phoenixframework.org/
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html
https://en.wikipedia.org/wiki/True_range_multilateration#Two_Cartesian_dimensions,_two_measured_slant_ranges_(Trilateration
https://en.wikipedia.org/wiki/True_range_multilateration#Two_Cartesian_dimensions,_two_measured_slant_ranges_(Trilateration
https://en.wikipedia.org/wiki/True_range_multilateration#Two_Cartesian_dimensions,_two_measured_slant_ranges_(Trilateration
https://learnyousomeerlang.com/supervisors
https://learnyousomeerlang.com/supervisors
https://erlang.org/doc/man/supervisor.html
http://erlang.org/doc/man/erlang.html#hibernate-3
http://erlang.org/doc/man/erlang.html#hibernate-3


Bibliography 116

[41] A. Carlier, I. Kopestenski, and D. Martens, Lasp on Grisp : implementation and
evaluation of a general purpose edge computing system for Internet of Things.
PhD thesis, UCL - Ecole polytechnique de Louvain, 2018.

[42] “Ipv4 multicast address space registry.” https://www.iana.org/

assignments/multicast-addresses/multicast-addresses.xhtml#

multicast-addresses-3.

[43] “How to use multiple ultrasonic sensors.” https://www.maxbotix.com/

tutorials1/031-using-multiple-ultrasonic-sensors.htm.

[44] “Distributed applications.” http://erlang.org/doc/design_principles/

distributed_applications.html.

[45] “global.” http://erlang.org/doc/man/global.html.

[46] “Distributed erlang.” http://erlang.org/doc/reference_manual/

distributed.html.

[47] “Controlling a maxsonar sensor.” https://www.maxbotix.com/tutorials2/

036-controlling-a-maxsonar-sensor.htm.

[48] Wikipedia contributors, “Round-trip delay — Wikipedia, the free encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=Round-trip_delay&
oldid=971345861, 2020. [Online; accessed 7-August-2020].

[49] Wikipedia contributors, “End-to-end delay — Wikipedia, the free encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=End-to-end_delay&
oldid=926525261, 2019. [Online; accessed 7-August-2020].

[50] “Pmod nav.” https://reference.digilentinc.com/reference/pmod/

pmodnav/start.

[51] “Rebar3 plugins upgrade.” https://www.rebar3.org/docs/

using-available-plugins#upgrading-plugins. Library Catalog:
www.rebar3.org.

https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml#multicast-addresses-3
https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml#multicast-addresses-3
https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml#multicast-addresses-3
https://www.maxbotix.com/tutorials1/031-using-multiple-ultrasonic-sensors.htm
https://www.maxbotix.com/tutorials1/031-using-multiple-ultrasonic-sensors.htm
http://erlang.org/doc/design_principles/distributed_applications.html
http://erlang.org/doc/design_principles/distributed_applications.html
http://erlang.org/doc/man/global.html
http://erlang.org/doc/reference_manual/distributed.html
http://erlang.org/doc/reference_manual/distributed.html
https://www.maxbotix.com/tutorials2/036-controlling-a-maxsonar-sensor.htm
https://www.maxbotix.com/tutorials2/036-controlling-a-maxsonar-sensor.htm
https://en.wikipedia.org/w/index.php?title=Round-trip_delay&oldid=971345861
https://en.wikipedia.org/w/index.php?title=Round-trip_delay&oldid=971345861
https://en.wikipedia.org/w/index.php?title=End-to-end_delay&oldid=926525261
https://en.wikipedia.org/w/index.php?title=End-to-end_delay&oldid=926525261
https://reference.digilentinc.com/reference/pmod/pmodnav/start
https://reference.digilentinc.com/reference/pmod/pmodnav/start
https://www.rebar3.org/docs/using-available-plugins#upgrading-plugins
https://www.rebar3.org/docs/using-available-plugins#upgrading-plugins




UNIVERSITÉ CATHOLIQUE DE LOUVAIN 
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl


	I Foundation
	1 Introduction
	1.1 The increase in the number of IoT devices
	1.2 Limits of the classical cloud model
	1.3 The computation shift towards the edge nodes
	1.4 Sensor fusion at the edge devices
	1.4.1 Sensor fusion
	1.4.2 Proposed approach
	1.4.3 Approach advantages

	1.5 Accurate real-time person tracking in a room
	1.5.1 Motivation
	1.5.2 Description

	1.6 Thesis contributions
	1.6.1 Experimental results

	1.7 Verdict

	2 Related Work
	2.1 Edge and fog computing
	2.2 Mist computing
	2.3 Data Fusion near the real edge
	2.4 Cognitive edge computing
	2.5 The Achlys framework
	2.6 Trilateration


	II Tools
	3 Resources used and methodology
	3.1 Requirements for the experiment
	3.2 Hardware
	3.2.1 GRiSP boards
	3.2.1.1 Motivation
	3.2.1.2 Specifications

	3.2.2 Pmod MAXSONAR sensor

	3.3 Software
	3.3.1 Erlang/OTP
	3.3.1.1 Introduction
	3.3.1.2 Desirable properties
	3.3.1.3 Modules
	3.3.1.4 Processes
	3.3.1.5 Rebar3
	3.3.1.6 The rebar3_grisp plugin

	3.3.2 Elixir, Mix and Phoenix LiveView

	3.4 Methodology


	III Experimentation
	4 Algorithm
	4.1 Foreword
	4.2 Description
	4.3 Trilateration
	4.3.1 Trilateration using 2 available measurements
	4.3.1.1 Formula derivation

	4.3.2 Trilateration using 3 available measurements


	5 Implementation
	5.1 Architecture
	5.2 Sensor_fusion
	5.2.1 Target tracker app
	5.2.2 Measurement and calculation functions
	5.2.2.1 Calculation function

	5.2.3 Sonar measurement filter
	5.2.4 Position filtering
	5.2.4.1 MinX, MinY and MaxX, MaxY filtering
	5.2.4.2 Speed filtering


	5.3 Hera
	5.3.1 Supervision tree
	5.3.2 Measurements
	5.3.2.1 Warm-up

	5.3.3 Filtering of measurements and calculations
	5.3.3.1 Generic filter

	5.3.4 Send messages : UDP multicast
	5.3.5 Data storage
	5.3.5.1 Data logger

	5.3.6 Calculations
	5.3.7 Genericity
	5.3.8 Starting the measurements and calculations

	5.4 Hera_synchronization
	5.4.1 Crosstalk between sonars
	5.4.2 Solution
	5.4.2.1 Distributed application
	5.4.2.2 Global processes


	5.5 Pull request to the GRiSP Erlang Runtime repository
	5.6 Sensor_fusion_live_view

	6 Experiments
	6.1 Data sending between GRiSP boards
	6.1.1 Setup
	6.1.2 Results
	6.1.2.1 UDP multicast
	6.1.2.2 Full mesh TCP


	6.2 Triggering of the Pmod MAXSONAR
	6.2.1 Setup
	6.2.2 Results

	6.3 Average response time to global processes on GRiSP boards
	6.3.1 Setup
	6.3.2 Results

	6.4 Person tracking
	6.4.1 Setup
	6.4.1.1 Fixed setup description
	6.4.1.2 Variable setups of nodes and tracked persons
	6.4.1.3 Software configuration

	6.4.2 Results
	6.4.2.1 Using 1 board
	6.4.2.2 Using 2 boards
	6.4.2.3 Using 3 boards
	6.4.2.4 Using 4 boards




	IV Conclusion
	7 Conclusion
	7.1 Results
	7.2 Future work

	A Source Code
	A.1 sensor_fusion
	A.1.1 hera_position
	A.1.2 Configuration files

	A.2 Hera
	A.2.1 hera_multicast

	A.3 hera_synchronization
	A.4 sensor_fusion_live_view
	A.5 pmod_maxsonar module

	B Figures
	B.1 Sensor_fusion
	B.1.1 Supervision tree

	B.2 LiveView
	B.3 Experiments
	B.3.1 Data sending between GRiSP boards
	B.3.1.1 UDP multicast
	B.3.1.2 TCP

	B.3.2 Person Tracking
	B.3.2.1 2 sonars
	B.3.2.2 3 sonars
	B.3.2.3 4 sonars



	C User manual
	C.1 Installation
	C.1.1 Software versions
	C.1.2 Updating versions
	C.1.2.1 Erlang 22.0
	C.1.2.2 Rebar3 plugins

	C.1.3 LiveView

	C.2 Deployment
	C.3 Launching the system
	C.3.1 Sensor_fusion
	C.3.2 LiveView

	C.4 Using Hera and Hera_synchronization for your own project
	C.5 Hera Runtime API

	Bibliography


